These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38906193)

  • 1. Remediation of soils contaminated with methomyl using electrochemically produced gaseous oxidants.
    Mirella da Silva L; Mena IF; Sáez C; Motheo AJ; Rodrigo MA
    Chemosphere; 2024 Jun; 362():142653. PubMed ID: 38906193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of Organics in Wastewater Using Electrogenerated Gaseous Oxidants.
    da Silva LM; Mena IF; Saez C; Motheo AJ; Rodrigo MA
    Ind Eng Chem Res; 2024 Apr; 63(15):6512-6520. PubMed ID: 38660619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling in situ ozonation for the remediation of nonvolatile PAH-contaminated unsaturated soils.
    Kim J; Choi H
    J Contam Hydrol; 2002 Apr; 55(3-4):261-85. PubMed ID: 11999632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation.
    Choi H; Lim HN; Kim J; Hwang TM; Kang JW
    J Contam Hydrol; 2002 Jul; 57(1-2):81-98. PubMed ID: 12143994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aged chlorophenol contaminated soil's integrated treatment by ozonation, soil washing and biological methods.
    Haapea P; Tuhkanen T
    Environ Technol; 2005 Jul; 26(7):811-9. PubMed ID: 16080336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium).
    Crowe KM; Bushway AA; Bushway RJ; Davis-Dentici K; Hazen RA
    Int J Food Microbiol; 2007 May; 116(1):25-31. PubMed ID: 17350128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils.
    Demir A; Köleli N
    Environ Technol; 2013; 34(5-8):799-805. PubMed ID: 23837331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined chemical and biological treatment of oil contaminated soil.
    Goi A; Kulik N; Trapido M
    Chemosphere; 2006 Jun; 63(10):1754-63. PubMed ID: 16293288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.
    Ramseier MK; Peter A; Traber J; von Gunten U
    Water Res; 2011 Feb; 45(5):2002-10. PubMed ID: 21220144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of benzo[a]pyrene contaminated soils by moderate chemical oxidation coupled with microbial degradation.
    Chen B; Xu J; Lu H; Zhu L
    Sci Total Environ; 2023 May; 871():161801. PubMed ID: 36739024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reagent-free electrokinetic remediation coupled with anode oxidation for the treatment of phenanthrene polluted soil.
    Chu L; Cang L; Sun Z; Wang X; Fang G; Gao J
    J Hazard Mater; 2022 Jul; 433():128724. PubMed ID: 35398794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical).
    Lee Y; von Gunten U
    Water Res; 2010 Jan; 44(2):555-66. PubMed ID: 20015530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can the green energies improve the sustainability of electrochemically-assisted soil remediation processes?
    Fernández-Marchante CM; Souza FL; Millán M; Lobato J; Rodrigo MA
    Sci Total Environ; 2022 Jan; 803():149991. PubMed ID: 34482137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-nitrosodimethylamine formation during treatment with strong oxidants of dimethylamine containing water.
    Andrzejewski P; Nawrocki J
    Water Sci Technol; 2007; 56(12):125-31. PubMed ID: 18075188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post-treatment.
    Venny ; Gan S; Ng HK
    Sci Total Environ; 2012 Mar; 419():240-9. PubMed ID: 22285087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soil using gas fractionation enhanced technology.
    Pang H; Dorian B; Gao L; Xie Z; Cran M; Muthukumaran S; Sidiroglou F; Gray S; Zhang J
    Sci Total Environ; 2022 Jun; 827():154310. PubMed ID: 35257781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) with chlorine, permanganate, ozone, hydrogen peroxide and hydroxyl radical.
    Chen YT; Chen WR; Lin TF
    Water Res; 2018 Oct; 142():187-195. PubMed ID: 29879656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of polycyclic aromatic hydrocarbons in soil: the Fenton reagent versus ozonation.
    Goi A; Trapido M
    Environ Technol; 2004 Feb; 25(2):155-64. PubMed ID: 15116873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of novel nanobubble-contained electrolyzed catalytic water to cleanup petroleum-hydrocarbon contaminated soils and groundwater: A pilot-scale and performance evaluation study.
    Ho WS; Lin WH; Verpoort F; Hong KL; Ou JH; Kao CM
    J Environ Manage; 2023 Dec; 347():119058. PubMed ID: 37757689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.