These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38906574)

  • 1. 3D finite element modeling of earplug-induced occlusion effect in the human ear.
    Bradshaw JJ; Brown MA; Bien AG; Gan RZ
    Med Eng Phys; 2024 Jul; 129():104192. PubMed ID: 38906574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Finite Element Modeling of Blast Wave Transmission from the External Ear to Cochlea.
    Brown MA; Ji XD; Gan RZ
    Ann Biomed Eng; 2021 Feb; 49(2):757-768. PubMed ID: 32926269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional finite element modeling of the human external ear: simulation study of the bone conduction occlusion effect.
    Brummund MK; Sgard F; Petit Y; Laville F
    J Acoust Soc Am; 2014 Mar; 135(3):1433-44. PubMed ID: 24606280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of the occlusion effect induced by earplugs using quasi perfect broadband absorption.
    Carillo K; Sgard F; Dazel O; Doutres O
    Sci Rep; 2022 Sep; 12(1):15336. PubMed ID: 36097159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft tissue conduction as a possible contributor to the limited attenuation provided by hearing protection devices.
    Chordekar S; Adelman C; Sohmer H; Kishon-Rabin L
    Noise Health; 2016; 18(84):274-279. PubMed ID: 27762257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evaluation of earplug behavior in front of high-level impulse noise using laser Doppler vibrometer.
    Blondé-Weinmann C; Joubaud T; Zimpfer V; Hamery P; De Mezzo S; Roth S
    J Acoust Soc Am; 2023 Aug; 154(2):792-800. PubMed ID: 37563825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea.
    Bradshaw JJ; Brown MA; Jiang S; Gan RZ
    Ann Biomed Eng; 2023 May; 51(5):1106-1118. PubMed ID: 37036617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of the occlusion effect with bone-conducted stimulation.
    Stenfelt S; Reinfeldt S
    Int J Audiol; 2007 Oct; 46(10):595-608. PubMed ID: 17922349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body.
    Ravicz ME; Melcher JR
    J Acoust Soc Am; 2001 Jan; 109(1):216-31. PubMed ID: 11206150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of the objective occlusion effect induced by bone-conducted stimulation using a three-dimensional finite-element model of a human head.
    Xu H; Sgard F; Carillo K; Wagnac É; de Guise J
    J Acoust Soc Am; 2021 Nov; 150(5):4018. PubMed ID: 34852629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Finite Element Modeling of Blast Wave Transmission From the External Ear to a Spiral Cochlea.
    Brown MA; Bradshaw JJ; Gan RZ
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear.
    Eric Lupo J; Koka K; Thornton JL; Tollin DJ
    Hear Res; 2011 Feb; 272(1-2):30-41. PubMed ID: 21073935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses.
    Homma K; Shimizu Y; Kim N; Du Y; Puria S
    Hear Res; 2010 May; 263(1-2):204-15. PubMed ID: 19944139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element simulation of cochlear traveling wave under air and bone conduction hearing.
    Ren LJ; Yu Y; Fang YQ; Hua C; Dai PD; Zhang TY
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1251-1265. PubMed ID: 33786715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Protection Mechanisms to Blast Overpressure for Personal Hearing Protection Devices - Biomechanical Measurement and Computational Modeling.
    Gan RZ; Leckness K; Smith K; Ji XD
    Mil Med; 2019 Mar; 184(Suppl 1):251-260. PubMed ID: 30901470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior-semicircular-canal dehiscence: effects of location, shape, and size on sound conduction.
    Kim N; Steele CR; Puria S
    Hear Res; 2013 Jul; 301():72-84. PubMed ID: 23562774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of the effect of middle ear in bone conduction.
    Dobrev I; Farahmandi TS; Röösli C
    Hear Res; 2020 Sep; 395():108041. PubMed ID: 32810722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.