These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38906947)
1. Freshwater microalgae Nannochloropsis limnetica for the production of β-galactosidase from whey powder. Li Y; Miros S; Eckhardt HG; Blanco A; Mulcahy S; Tiwari BK; Halim R Sci Rep; 2024 Jun; 14(1):14346. PubMed ID: 38906947 [TBL] [Abstract][Full Text] [Related]
2. Microalgal conversion of whey and lactose containing substrates: current state and challenges. Kolesovs S; Semjonovs P Biodegradation; 2023 Oct; 34(5):405-416. PubMed ID: 37329398 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen and phosphate removal from dairy processing side-streams by monocultures or consortium of microalgae. Kiani H; Azimi Y; Li Y; Mousavi M; Cara F; Mulcahy S; McDonnell H; Blanco A; Halim R J Biotechnol; 2023 Jan; 361():1-11. PubMed ID: 36410532 [TBL] [Abstract][Full Text] [Related]
4. High efficiency transformation by electroporation of the freshwater alga Nannochloropsis limnetica. Chen Y; Hu H World J Microbiol Biotechnol; 2019 Jul; 35(8):119. PubMed ID: 31332541 [TBL] [Abstract][Full Text] [Related]
5. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica. von Alvensleben N; Stookey K; Magnusson M; Heimann K PLoS One; 2013; 8(5):e63569. PubMed ID: 23667639 [TBL] [Abstract][Full Text] [Related]
6. Whey permeate as a phosphorus source for algal cultivation. Nham Q; Mattsson L; Legrand C; Lindehoff E Water Environ Res; 2023 Apr; 95(4):e10865. PubMed ID: 37032530 [TBL] [Abstract][Full Text] [Related]
7. Interaction between microalgae and phycosphere bacteria in a binary cultivation system-based dairy farm wastewater treatment. Cao Y; Zhi S; Phyu K; Wang H; Liu J; Xu X; Zhang K Bioresour Technol; 2024 Oct; 409():131248. PubMed ID: 39127364 [TBL] [Abstract][Full Text] [Related]
8. Microalgal production and nutrient recovery under mixotrophic mode using cheese whey permeate. Nham Q; Legrand C; Lindehoff E Bioresour Technol; 2024 Oct; 410():131250. PubMed ID: 39127358 [TBL] [Abstract][Full Text] [Related]
9. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147 [TBL] [Abstract][Full Text] [Related]
10. Bioremediation potential of the Chlorella and Scenedesmus microalgae in explosives production effluents. Condori MAM; Condori MM; Gutierrez MEV; Choix FJ; García-Camacho F Sci Total Environ; 2024 Apr; 920():171004. PubMed ID: 38369159 [TBL] [Abstract][Full Text] [Related]
11. Enhanced β-galactosidase production from whey powder by a mutant of the psychrotolerant yeast Guehomyces pullulans 17-1 for hydrolysis of lactose. Xu JL; Zhao J; Wang LF; Sun HY; Song CL; Chi ZM Appl Biochem Biotechnol; 2012 Feb; 166(3):599-611. PubMed ID: 22086565 [TBL] [Abstract][Full Text] [Related]
12. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae. Sutherland DL; Bramucci A J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545 [TBL] [Abstract][Full Text] [Related]
13. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Gupta PL; Choi HJ; Lee SM Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689 [TBL] [Abstract][Full Text] [Related]
14. Cultivation of Mixed Microalgae Using Municipal Wastewater: Biomass Productivity, Nutrient Removal, and Biochemical Content. Fallahi A; Hajinajaf N; Tavakoli O; Sarrafzadeh MH Iran J Biotechnol; 2020 Oct; 18(4):e2586. PubMed ID: 34056025 [TBL] [Abstract][Full Text] [Related]
15. Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. Daneshvar E; Zarrinmehr MJ; Koutra E; Kornaros M; Farhadian O; Bhatnagar A Bioresour Technol; 2019 Feb; 273():556-564. PubMed ID: 30476864 [TBL] [Abstract][Full Text] [Related]
16. Growth promotion of three microalgae, Toyama T; Kasuya M; Hanaoka T; Kobayashi N; Tanaka Y; Inoue D; Sei K; Morikawa M; Mori K Biotechnol Biofuels; 2018; 11():176. PubMed ID: 29983739 [TBL] [Abstract][Full Text] [Related]
17. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source. Davis RW; Siccardi AJ; Huysman ND; Wyatt NB; Hewson JC; Lane TW Bioresour Technol; 2015 Dec; 198():577-85. PubMed ID: 26433155 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the productivity and bioremediation potential of two tropical marine algae in petroleum hydrocarbon polluted tropical marine water. Ezenweani RS; Kadiri MO Int J Phytoremediation; 2024 May; 26(7):1099-1116. PubMed ID: 38093707 [TBL] [Abstract][Full Text] [Related]
19. Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices. Kokkiligadda A; Beniwal A; Saini P; Vij S Appl Biochem Biotechnol; 2016 Aug; 179(8):1469-84. PubMed ID: 27059625 [TBL] [Abstract][Full Text] [Related]
20. A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Patel AK; Joun J; Sim SJ Bioresour Technol; 2020 Oct; 313():123681. PubMed ID: 32562971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]