These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38907430)

  • 1. Explosive transitions in coupled Lorenz oscillators.
    Muthanna YA; Jafri HH
    Phys Rev E; 2024 May; 109(5-1):054206. PubMed ID: 38907430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition to intermittent chaotic synchronization.
    Zhao L; Lai YC; Shih CW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036212. PubMed ID: 16241553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins.
    Ujjwal SR; Punetha N; Ramaswamy R; Agrawal M; Prasad A
    Chaos; 2016 Jun; 26(6):063111. PubMed ID: 27368776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explosive death in nonlinear oscillators coupled by quorum sensing.
    Verma UK; Chaurasia SS; Sinha S
    Phys Rev E; 2019 Sep; 100(3-1):032203. PubMed ID: 31640010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explosive synchronization in a turbulent reactive flow system.
    Joseph A; Pavithran I; Sujith RI
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38412535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled Lorenz oscillators near the Hopf boundary: Multistability, intermingled basins, and quasiriddling.
    Wontchui TT; Effa JY; Fouda HPE; Ujjwal SR; Ramaswamy R
    Phys Rev E; 2017 Dec; 96(6-1):062203. PubMed ID: 29347357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective dynamics of coupled Lorenz oscillators near the Hopf boundary: Intermittency and chimera states.
    Khatun AA; Muthanna YA; Punetha N; Jafri HH
    Phys Rev E; 2024 Mar; 109(3-1):034208. PubMed ID: 38632727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging chimera states under nonidentical counter-rotating oscillators.
    Sathiyadevi K; Chandrasekar VK; Lakshmanan M
    Phys Rev E; 2022 Mar; 105(3-1):034211. PubMed ID: 35428132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explosive first-order transition to synchrony in networked chaotic oscillators.
    Leyva I; Sevilla-Escoboza R; Buldú JM; Sendiña-Nadal I; Gómez-Gardeñes J; Arenas A; Moreno Y; Gómez S; Jaimes-Reátegui R; Boccaletti S
    Phys Rev Lett; 2012 Apr; 108(16):168702. PubMed ID: 22680761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Route to synchronization in coupled phase oscillators with frequency-dependent coupling: Explosive or continuous?
    Kumar M; Gupta S
    Phys Rev E; 2022 Oct; 106(4-1):044310. PubMed ID: 36397479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additional complex conjugate feedback-induced explosive death and multistabilities.
    Sathiyadevi K; Premraj D; Banerjee T; Lakshmanan M
    Phys Rev E; 2022 Aug; 106(2-1):024215. PubMed ID: 36109943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator.
    Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J
    Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three types of transitions to phase synchronization in coupled chaotic oscillators.
    Osipov GV; Hu B; Zhou C; Ivanchenko MV; Kurths J
    Phys Rev Lett; 2003 Jul; 91(2):024101. PubMed ID: 12906481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explosive death induced by mean-field diffusion in identical oscillators.
    Verma UK; Sharma A; Kamal NK; Kurths J; Shrimali MD
    Sci Rep; 2017 Aug; 7(1):7936. PubMed ID: 28801562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators.
    Liu W; Volkov E; Xiao J; Zou W; Zhan M; Yang J
    Chaos; 2012 Sep; 22(3):033144. PubMed ID: 23020483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jump intermittency as a second type of transition to and from generalized synchronization.
    Koronovskii AA; Moskalenko OI; Pivovarov AA; Khanadeev VA; Hramov AE; Pisarchik AN
    Phys Rev E; 2020 Jul; 102(1-1):012205. PubMed ID: 32794947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions.
    Dixit S; Nag Chowdhury S; Prasad A; Ghosh D; Shrimali MD
    Chaos; 2021 Jan; 31(1):011105. PubMed ID: 33754786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of chimeras through induced multistability.
    Ujjwal SR; Punetha N; Prasad A; Ramaswamy R
    Phys Rev E; 2017 Mar; 95(3-1):032203. PubMed ID: 28415241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling.
    Wu H; Kang L; Liu Z; Dhamala M
    Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explosive synchronization coexists with classical synchronization in the Kuramoto model.
    Danziger MM; Moskalenko OI; Kurkin SA; Zhang X; Havlin S; Boccaletti S
    Chaos; 2016 Jun; 26(6):065307. PubMed ID: 27369869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.