These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38907462)
1. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling. Bolotov MI; Munyayev VO; Smirnov LA; Osipov GV; Belykh I Phys Rev E; 2024 May; 109(5-1):054202. PubMed ID: 38907462 [TBL] [Abstract][Full Text] [Related]
2. Cyclops States in Repulsive Kuramoto Networks: The Role of Higher-Order Coupling. Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh I Phys Rev Lett; 2023 Mar; 130(10):107201. PubMed ID: 36962033 [TBL] [Abstract][Full Text] [Related]
3. Stability of rotatory solitary states in Kuramoto networks with inertia. Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064 [TBL] [Abstract][Full Text] [Related]
4. Stability and bifurcation of collective dynamics in phase oscillator populations with general coupling. Xu C; Wang X; Zheng Z; Cai Z Phys Rev E; 2021 Mar; 103(3-1):032307. PubMed ID: 33862749 [TBL] [Abstract][Full Text] [Related]
5. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
6. Solitary states for coupled oscillators with inertia. Jaros P; Brezetsky S; Levchenko R; Dudkowski D; Kapitaniak T; Maistrenko Y Chaos; 2018 Jan; 28(1):011103. PubMed ID: 29390619 [TBL] [Abstract][Full Text] [Related]
7. Bistability of patterns of synchrony in Kuramoto oscillators with inertia. Belykh IV; Brister BN; Belykh VN Chaos; 2016 Sep; 26(9):094822. PubMed ID: 27781476 [TBL] [Abstract][Full Text] [Related]
8. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators. Kato M; Kori H Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893 [TBL] [Abstract][Full Text] [Related]
9. How synaptic function controls critical transitions in spiking neuron networks: insight from a Kuramoto model reduction. Smirnov LA; Munyayev VO; Bolotov MI; Osipov GV; Belykh I Front Netw Physiol; 2024; 4():1423023. PubMed ID: 39185374 [TBL] [Abstract][Full Text] [Related]
10. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Bick C; Ashwin P; Rodrigues A Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441 [TBL] [Abstract][Full Text] [Related]
11. Synchronization transitions in Kuramoto networks with higher-mode interaction. Berner R; Lu A; Sokolov IM Chaos; 2023 Jul; 33(7):. PubMed ID: 37463093 [TBL] [Abstract][Full Text] [Related]
12. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia. Brister BN; Belykh VN; Belykh IV Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588 [TBL] [Abstract][Full Text] [Related]
13. Complexified synchrony. Lee S; Braun L; Bönisch F; Schröder M; Thümler M; Timme M Chaos; 2024 May; 34(5):. PubMed ID: 38814675 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity. Banerjee A; Acharyya M Phys Rev E; 2016 Aug; 94(2-1):022213. PubMed ID: 27627304 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter. Chen B; Engelbrecht JR; Mirollo R Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124 [TBL] [Abstract][Full Text] [Related]
16. Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength. Hong H Phys Rev E; 2017 Jul; 96(1-1):012213. PubMed ID: 29347132 [TBL] [Abstract][Full Text] [Related]
17. Generalized splay states in phase oscillator networks. Berner R; Yanchuk S; Maistrenko Y; Schöll E Chaos; 2021 Jul; 31(7):073128. PubMed ID: 34340340 [TBL] [Abstract][Full Text] [Related]
18. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
19. Chimeras and solitary states in 3D oscillator networks with inertia. Maistrenko V; Sudakov O; Osiv O Chaos; 2020 Jun; 30(6):063113. PubMed ID: 32611131 [TBL] [Abstract][Full Text] [Related]
20. Heteroclinic switching between chimeras in a ring of six oscillator populations. Lee S; Krischer K Chaos; 2023 Jun; 33(6):. PubMed ID: 37276574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]