These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38907503)
1. Synchronization through frequency shuffling. Aravind M; Pachaulee V; Sarkar M; Tiwari I; Gupta S; Parmananda P Phys Rev E; 2024 May; 109(5):L052302. PubMed ID: 38907503 [TBL] [Abstract][Full Text] [Related]
2. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators. English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391 [TBL] [Abstract][Full Text] [Related]
3. Reduction of oscillator dynamics on complex networks to dynamics on complete graphs through virtual frequencies. Gao J; Efstathiou K Phys Rev E; 2020 Feb; 101(2-1):022302. PubMed ID: 32168684 [TBL] [Abstract][Full Text] [Related]
4. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies. Hong H; Park H; Choi MY Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558 [TBL] [Abstract][Full Text] [Related]
6. Effective Subnetwork Topology for Synchronizing Interconnected Networks of Coupled Phase Oscillators. Yamamoto H; Kubota S; Shimizu FA; Hirano-Iwata A; Niwano M Front Comput Neurosci; 2018; 12():17. PubMed ID: 29643771 [TBL] [Abstract][Full Text] [Related]
7. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION. Taylor D; Skardal PS; Sun J SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501 [TBL] [Abstract][Full Text] [Related]
8. Local synchronization in complex networks of coupled oscillators. Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787 [TBL] [Abstract][Full Text] [Related]
9. Individual differences of limitation to extract beat from Kuramoto coupled oscillators: Transition from beat-based tapping to frequent tapping with weaker coupling. Lem N; Fujioka T PLoS One; 2023; 18(10):e0292059. PubMed ID: 37812651 [TBL] [Abstract][Full Text] [Related]
10. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model. English LQ; Zeng Z; Mertens D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767 [TBL] [Abstract][Full Text] [Related]
11. On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators. Kelly D; Gottwald GA Chaos; 2011 Jun; 21(2):025110. PubMed ID: 21721788 [TBL] [Abstract][Full Text] [Related]
12. Asymmetry in the Kuramoto model with nonidentical coupling. Elaeva M; Blanter E; Shnirman M; Shapoval A Phys Rev E; 2023 Jun; 107(6-1):064201. PubMed ID: 37464665 [TBL] [Abstract][Full Text] [Related]
13. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators. Kato M; Kori H Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893 [TBL] [Abstract][Full Text] [Related]
14. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators. Radicchi F; Meyer-Ortmanns H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521 [TBL] [Abstract][Full Text] [Related]
15. Stochastic Kuramoto oscillators with discrete phase states. Jörg DJ Phys Rev E; 2017 Sep; 96(3-1):032201. PubMed ID: 29346898 [TBL] [Abstract][Full Text] [Related]
16. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling. Wu H; Kang L; Liu Z; Dhamala M Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395 [TBL] [Abstract][Full Text] [Related]
17. Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators. Ha SY; Lee J; Li Z Chaos; 2018 Nov; 28(11):113112. PubMed ID: 30501218 [TBL] [Abstract][Full Text] [Related]
18. Binary mixtures of locally coupled mobile oscillators. Paulo G; Tasinkevych M Phys Rev E; 2021 Jul; 104(1-1):014204. PubMed ID: 34412317 [TBL] [Abstract][Full Text] [Related]
19. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators. Papadopoulos L; Kim JZ; Kurths J; Bassett DS Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402 [TBL] [Abstract][Full Text] [Related]
20. Multiplexing topologies and time scales: The gains and losses of synchrony. Makovkin S; Kumar A; Zaikin A; Jalan S; Ivanchenko M Phys Rev E; 2017 Nov; 96(5-1):052214. PubMed ID: 29347745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]