These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38908642)
21. Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. Zuo Y; Kong M; Mu Y; Feng C; Chen X Int J Biol Macromol; 2017 Nov; 104(Pt A):157-164. PubMed ID: 28600203 [TBL] [Abstract][Full Text] [Related]
22. Redox-responsive degradable prodrug nanogels for intracellular drug delivery by crosslinking of amine-functionalized poly(N-vinylpyrrolidone) copolymers. Peng H; Huang X; Melle A; Karperien M; Pich A J Colloid Interface Sci; 2019 Mar; 540():612-622. PubMed ID: 30690386 [TBL] [Abstract][Full Text] [Related]
23. Characterization of protein and peptide binding to nanogels formed by differently charged chitosan derivatives. Zubareva A; Ily'ina A; Prokhorov A; Kurek D; Efremov M; Varlamov V; Senel S; Ignatyev P; Svirshchevskaya Е Molecules; 2013 Jul; 18(7):7848-64. PubMed ID: 23823877 [TBL] [Abstract][Full Text] [Related]
24. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. Xing L; Fan YT; Shen LJ; Yang CX; Liu XY; Ma YN; Qi LY; Cho KH; Cho CS; Jiang HL Int J Biol Macromol; 2019 Dec; 141():85-97. PubMed ID: 31473314 [TBL] [Abstract][Full Text] [Related]
25. pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy. Yang G; Wang X; Fu S; Tang R; Wang J Acta Biomater; 2017 Sep; 60():232-243. PubMed ID: 28479490 [TBL] [Abstract][Full Text] [Related]
26. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis. Yar M; Shahzad S; Siddiqi SA; Mahmood N; Rauf A; Anwar MS; Chaudhry AA; Rehman Iu Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():154-64. PubMed ID: 26249576 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Li XM; Wu ZZ; Zhang B; Pan Y; Meng R; Chen HQ Food Chem; 2019 Sep; 293():197-203. PubMed ID: 31151601 [TBL] [Abstract][Full Text] [Related]
28. Novel chitosan-based pH-sensitive and disintegrable polyelectrolyte nanogels. Yuan F; Wang S; Chen G; Tu K; Jiang H; Wang LQ Colloids Surf B Biointerfaces; 2014 Oct; 122():194-201. PubMed ID: 25042598 [TBL] [Abstract][Full Text] [Related]
29. pH Responsive 5-Fluorouracil Loaded Biocompatible Nanogels For Topical Chemotherapy of Aggressive Melanoma. Sahu P; Kashaw SK; Sau S; Kushwah V; Jain S; Agrawal RK; Iyer AK Colloids Surf B Biointerfaces; 2019 Feb; 174():232-245. PubMed ID: 30465998 [TBL] [Abstract][Full Text] [Related]
30. Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma. Wu Y; Chen W; Meng F; Wang Z; Cheng R; Deng C; Liu H; Zhong Z J Control Release; 2012 Dec; 164(3):338-45. PubMed ID: 22800578 [TBL] [Abstract][Full Text] [Related]
31. Reaction kinetics of chitosan nanogels crosslinked by genipin. Zhao X; Tang J; Liu Y; Hu B; Chen Q; Liu Y J Chromatogr A; 2023 Nov; 1710():464427. PubMed ID: 37812945 [TBL] [Abstract][Full Text] [Related]
32. Exogenous vitamin C triggered structural changes of redox-activated dual core-crosslinked biodegradable nanogels for boosting the antitumor efficiency. Zhu Y; He Y; Su T; Li C; Cai S; Wu Z; Huang D; Zhang X; Cao J; He B J Mater Chem B; 2020 Jun; 8(23):5109-5116. PubMed ID: 32412025 [TBL] [Abstract][Full Text] [Related]
33. Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release. Gui R; Wang Y; Sun J Colloids Surf B Biointerfaces; 2014 Apr; 116():518-25. PubMed ID: 24576821 [TBL] [Abstract][Full Text] [Related]
34. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. Ranjha NM; Ayub G; Naseem S; Ansari MT J Mater Sci Mater Med; 2010 Oct; 21(10):2805-16. PubMed ID: 20686825 [TBL] [Abstract][Full Text] [Related]
35. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. de Souza Costa-Júnior E; Pereira MM; Mansur HS J Mater Sci Mater Med; 2009 Feb; 20(2):553-61. PubMed ID: 18987949 [TBL] [Abstract][Full Text] [Related]
36. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. Sahu P; Kashaw SK; Jain S; Sau S; Iyer AK J Control Release; 2017 May; 253():122-136. PubMed ID: 28322977 [TBL] [Abstract][Full Text] [Related]
37. Construction of carboxymethyl konjac glucomannan/chitosan complex nanogels as potential delivery vehicles for curcumin. Wu C; Sun J; Jiang H; Li Y; Pang J Food Chem; 2021 Nov; 362():130242. PubMed ID: 34116430 [TBL] [Abstract][Full Text] [Related]
38. Matrix Metalloproteinase-sensitive Multistage Nanogels Promote Drug Transport in 3D Tumor Model. Nagel G; Sousa-Herves A; Wedepohl S; Calderón M Theranostics; 2020; 10(1):91-108. PubMed ID: 31903108 [TBL] [Abstract][Full Text] [Related]
39. Chitosan-decorated and tripolyphosphate-crosslinked pH-sensitive niosomal nanogels for Controlled release of fluoropyrimidine 5-fluorouracil. Ahmed MM; Ameen MSM; Abazari M; Badeleh SM; Rostamizadeh K; Mohammed SS Biomed Pharmacother; 2023 Aug; 164():114943. PubMed ID: 37267634 [TBL] [Abstract][Full Text] [Related]
40. Chitosan nanogels as nanocarriers of polyoxometalates for breast cancer therapies. Pérez-Álvarez L; Ruiz-Rubio L; Artetxe B; Vivanco MD; Gutiérrez-Zorrilla JM; Vilas-Vilela JL Carbohydr Polym; 2019 Jun; 213():159-167. PubMed ID: 30879655 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]