BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38909034)

  • 1. Overexpression of TBX3 suppresses tumorigenesis in experimental and human cholangiocarcinoma.
    Deng S; Lu X; Wang X; Liang B; Xu H; Yang D; Cui G; Yonemura A; Paine H; Zhou Y; Zhang Y; Simile MM; Urigo F; Evert M; Calvisi DF; Green BL; Chen X
    Cell Death Dis; 2024 Jun; 15(6):441. PubMed ID: 38909034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis.
    Wang J; Wang H; Peters M; Ding N; Ribback S; Utpatel K; Cigliano A; Dombrowski F; Xu M; Chen X; Song X; Che L; Evert M; Cossu A; Gordan J; Zeng Y; Chen X; Calvisi DF
    J Hepatol; 2019 Oct; 71(4):742-752. PubMed ID: 31195063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma.
    Lixin S; Wei S; Haibin S; Qingfu L; Tiemin P
    Mol Carcinog; 2020 Dec; 59(12):1371-1381. PubMed ID: 33052627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways.
    Tiemin P; Fanzheng M; Peng X; Jihua H; Ruipeng S; Yaliang L; Yan W; Junlin X; Qingfu L; Zhefeng H; Jian L; Zihao G; Guoxing L; Boshi S; Ming Z; Qinghui M; Desen L; Lianxin L
    J Hepatol; 2020 Apr; 72(4):761-773. PubMed ID: 31837357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis.
    Mancarella S; Serino G; Dituri F; Cigliano A; Ribback S; Wang J; Chen X; Calvisi DF; Giannelli G
    Cell Death Differ; 2020 Aug; 27(8):2330-2343. PubMed ID: 32042099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling the role of HP1α-HDAC1-STAT1 axis as a therapeutic target for HP1α-positive intrahepatic cholangiocarcinoma.
    Xiong F; Wang D; Xiong W; Wang X; Huang WH; Wu GH; Liu WZ; Wang Q; Chen JS; Kuai YY; Wang B; Chen YJ
    J Exp Clin Cancer Res; 2024 May; 43(1):152. PubMed ID: 38812060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The FXR agonist obeticholic acid inhibits the cancerogenic potential of human cholangiocarcinoma.
    Di Matteo S; Nevi L; Costantini D; Overi D; Carpino G; Safarikia S; Giulitti F; Napoletano C; Manzi E; De Rose AM; Melandro F; Bragazzi M; Berloco PB; Giuliante F; Grazi G; Giorgi A; Cardinale V; Adorini L; Gaudio E; Alvaro D
    PLoS One; 2019; 14(1):e0210077. PubMed ID: 30677052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Numb promotes hepatic progenitor expansion and intrahepatic cholangiocarcinoma by enhancing Notch signaling.
    Shu Y; Xu Q; Xu Y; Tao Q; Shao M; Cao X; Chen Y; Wu Z; Chen M; Zhou Y; Zhou P; Shi Y; Bu H
    Cell Death Dis; 2021 Oct; 12(11):966. PubMed ID: 34667161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CAPS1 Suppresses Tumorigenesis in Cholangiocarcinoma.
    Weng S; Janssen HLA; Zhang N; Tang W; Bai E; Yang B; Dong L
    Dig Dis Sci; 2020 Apr; 65(4):1053-1063. PubMed ID: 31562609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming.
    Colyn L; Alvarez-Sola G; Latasa MU; Uriarte I; Herranz JM; Arechederra M; Vlachogiannis G; Rae C; Pineda-Lucena A; Casadei-Gardini A; Pedica F; Aldrighetti L; López-López A; López-Gonzálvez A; Barbas C; Ciordia S; Van Liempd SM; Falcón-Pérez JM; Urman J; Sangro B; Vicent S; Iraburu MJ; Prosper F; Nelson LJ; Banales JM; Martinez-Chantar ML; Marin JJG; Braconi C; Trautwein C; Corrales FJ; Cubero FJ; Berasain C; Fernandez-Barrena MG; Avila MA
    J Exp Clin Cancer Res; 2022 May; 41(1):183. PubMed ID: 35619118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma.
    Zhang Y; Xu H; Cui G; Liang B; Chen X; Ko S; Affo S; Song X; Liao Y; Feng J; Wang P; Wang H; Xu M; Wang J; Pes GM; Ribback S; Zeng Y; Singhi A; Schwabe RF; Monga SP; Evert M; Tang L; Calvisi DF; Chen X
    Gastroenterology; 2022 Aug; 163(2):481-494. PubMed ID: 35489428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma.
    Yang G; Zong H
    Mol Med Rep; 2016 Jun; 13(6):4786-90. PubMed ID: 27082702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MiR-206 suppresses the deterioration of intrahepatic cholangiocarcinoma and promotes sensitivity to chemotherapy by inhibiting interactions with stromal CAFs.
    Yang R; Wang D; Han S; Gu Y; Li Z; Deng L; Yin A; Gao Y; Li X; Yu Y; Wang X
    Int J Biol Sci; 2022; 18(1):43-64. PubMed ID: 34975317
    [No Abstract]   [Full Text] [Related]  

  • 14. Fragile X mental retardation protein in intrahepatic cholangiocarcinoma: regulating the cancer cell behavior plasticity at the leading edge.
    Carotti S; Zingariello M; Francesconi M; D'Andrea L; Latasa MU; Colyn L; Fernandez-Barrena MG; Flammia RS; Falchi M; Righi D; Pedini G; Pantano F; Bagni C; Perrone G; Rana RA; Avila MA; Morini S; Zalfa F
    Oncogene; 2021 Jun; 40(23):4033-4049. PubMed ID: 34017076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chimeric immune checkpoint protein vaccines inhibit the tumorigenesis and growth of rat cholangiocarcinoma.
    Pan YR; Wu CE; Huang WK; Chen MH; Lan KH; Yeh CN
    Front Immunol; 2022; 13():982196. PubMed ID: 36341387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Mouse Model of Cholangiocarcinoma Uncovers a Role for Tensin-4 in Tumor Progression.
    Di-Luoffo M; Pirenne S; Saandi T; Loriot A; Gérard C; Dauguet N; Manzano-Núñez F; Alves Souza Carvalhais N; Lamoline F; Cordi S; Konobrocka K; De Greef V; Komuta M; Halder G; Jacquemin P; Lemaigre FP
    Hepatology; 2021 Sep; 74(3):1445-1460. PubMed ID: 33768568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CircZNF215 promotes tumor growth and metastasis through inactivation of the PTEN/AKT pathway in intrahepatic cholangiocarcinoma.
    Liao W; Du J; Li L; Wu X; Chen X; Feng Q; Xu L; Chen X; Liao M; Huang J; Yuan K; Zeng Y
    J Exp Clin Cancer Res; 2023 May; 42(1):125. PubMed ID: 37198696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syngeneic murine models with distinct immune microenvironments represent subsets of human intrahepatic cholangiocarcinoma.
    Tomlinson JL; Li B; Yang J; Loeuillard E; Stumpf HE; Kuipers H; Watkins R; Carlson DM; Willhite J; O'Brien DR; Graham RP; Chen X; Smoot RL; Dong H; Gores GJ; Ilyas SI
    J Hepatol; 2024 Jun; 80(6):892-903. PubMed ID: 38458319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldehyde dehydrogenase 3B2 promotes the proliferation and invasion of cholangiocarcinoma by increasing Integrin Beta 1 expression.
    Wang Y; Li K; Zhao W; Liu Z; Liu J; Shi A; Chen T; Mu W; Xu Y; Pan C; Zhang Z
    Cell Death Dis; 2021 Dec; 12(12):1158. PubMed ID: 34907179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the role of necroptosis microenvironment: FCGBP + tumor-associated macrophages drive primary liver cancer differentiation towards cHCC-CCA or iCCA.
    Wang C; Chen C; Hu W; Tao L; Chen J
    Apoptosis; 2024 Apr; 29(3-4):460-481. PubMed ID: 38017206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.