These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38909149)

  • 1. Improved prediction of anti-angiogenic peptides based on machine learning models and comprehensive features from peptide sequences.
    Lee YC; Yu JC; Ni K; Lin YC; Chen CT
    Sci Rep; 2024 Jun; 14(1):14387. PubMed ID: 38909149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework.
    Gaffar S; Tayara H; Chong KT
    Comput Biol Med; 2024 May; 174():108438. PubMed ID: 38613893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review and Comparative Analysis of Machine Learning-based Predictors for Predicting and Analyzing Anti-angiogenic Peptides.
    Charoenkwan P; Chiangjong W; Hasan MM; Nantasenamat C; Shoombuatong W
    Curr Med Chem; 2022; 29(5):849-864. PubMed ID: 34375178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of high anti-angiogenic activity peptides in silico using a generalized linear model and feature selection.
    Blanco JL; Porto-Pazos AB; Pazos A; Fernandez-Lozano C
    Sci Rep; 2018 Oct; 8(1):15688. PubMed ID: 30356060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TargetAntiAngio: A Sequence-Based Tool for the Prediction and Analysis of Anti-Angiogenic Peptides.
    Laengsri V; Nantasenamat C; Schaduangrat N; Nuchnoi P; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ENCAP: Computational prediction of tumor T cell antigens with ensemble classifiers and diverse sequence features.
    Yu JC; Ni K; Chen CT
    PLoS One; 2024; 19(7):e0307176. PubMed ID: 39024250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder.
    Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A
    Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AntAngioCOOL: computational detection of anti-angiogenic peptides.
    Zahiri J; Khorsand B; Yousefi AA; Kargar M; Shirali Hossein Zade R; Mahdevar G
    J Transl Med; 2019 Mar; 17(1):71. PubMed ID: 30832671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a Classifier Fusion Strategy to Identify Anti-angiogenic Peptides.
    Zhang L; Yang R; Zhang C
    Sci Rep; 2018 Sep; 8(1):14062. PubMed ID: 30218091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).
    Qureshi A; Tandon H; Kumar M
    Biopolymers; 2015 Nov; 104(6):753-63. PubMed ID: 26213387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AntiAngioPred: A Server for Prediction of Anti-Angiogenic Peptides.
    Ettayapuram Ramaprasad AS; Singh S; Gajendra P S R; Venkatesan S
    PLoS One; 2015; 10(9):e0136990. PubMed ID: 26335203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model.
    Akbar S; Ahmad A; Hayat M; Rehman AU; Khan S; Ali F
    Comput Biol Med; 2021 Oct; 137():104778. PubMed ID: 34481183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ECAmyloid: An amyloid predictor based on ensemble learning and comprehensive sequence-derived features.
    Yang R; Liu J; Zhang L
    Comput Biol Chem; 2023 Jun; 104():107853. PubMed ID: 36990028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-based analysis and prediction of lantibiotics: A machine learning approach.
    Poorinmohammad N; Hamedi J; Moghaddam MHAM
    Comput Biol Chem; 2018 Dec; 77():199-206. PubMed ID: 30342319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IF-AIP: A machine learning method for the identification of anti-inflammatory peptides using multi-feature fusion strategy.
    Gaffar S; Hassan MT; Tayara H; Chong KT
    Comput Biol Med; 2024 Jan; 168():107724. PubMed ID: 37989075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AIEpred: An Ensemble Predictive Model of Classifier Chain to Identify Anti-Inflammatory Peptides.
    Zhang J; Zhang Z; Pu L; Tang J; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1831-1840. PubMed ID: 31985437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.