These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38909152)

  • 1. Fundamental insights and recent advances in catalytic oxidation processes using ozone for the control of volatile organic compounds.
    Einaga H; Zheng X
    Environ Sci Pollut Res Int; 2024 Jul; 31(31):43540-43560. PubMed ID: 38909152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble Metal Single-Atom Catalysts for the Catalytic Oxidation of Volatile Organic Compounds.
    Zhang L; Xue L; Lin B; Zhao Q; Wan S; Wang Y; Jia H; Xiong H
    ChemSusChem; 2022 Apr; 15(7):e202102494. PubMed ID: 35049142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances of VOCs Catalytic Oxidation over Spinel Oxides: Catalyst Design and Reaction Mechanism.
    Shan C; Wang Y; Li J; Zhao Q; Han R; Liu C; Liu Q
    Environ Sci Technol; 2023 Jul; 57(26):9495-9514. PubMed ID: 37313598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic ozonation of VOCs at low temperature: A comprehensive review.
    Liu B; Ji J; Zhang B; Huang W; Gan Y; Leung DYC; Huang H
    J Hazard Mater; 2022 Jan; 422():126847. PubMed ID: 34416698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation.
    Wu M; Huang H; Leung DYC
    J Environ Manage; 2022 Apr; 307():114559. PubMed ID: 35066195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removing volatile organic compounds in cooking fume by nano-sized TiO
    Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH
    Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review.
    Gao W; Tang X; Yi H; Jiang S; Yu Q; Xie X; Zhuang R
    J Environ Sci (China); 2023 Mar; 125():112-134. PubMed ID: 36375898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Catalytic Ozonation of Multitype VOCs over Zeolite-Supported Catalysts.
    Shao J; Zhai Y; Zhang L; Xiang L; Lin F
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor.
    Karuppiah J; Reddy EL; Reddy PM; Ramaraju B; Karvembu R; Subrahmanyam Ch
    J Hazard Mater; 2012 Oct; 237-238():283-9. PubMed ID: 22975253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Structural Defects in MnO
    Deng H; Kang S; Ma J; Wang L; Zhang C; He H
    Environ Sci Technol; 2019 Sep; 53(18):10871-10879. PubMed ID: 31415165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation.
    Zhang K; Ding H; Pan W; Mu X; Qiu K; Ma J; Zhao Y; Song J; Zhang Z
    Environ Sci Technol; 2022 Jul; 56(13):9220-9236. PubMed ID: 35580211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: kinetics, mechanism, and effect of ozone.
    Kolar P; Kastner JR
    Chemosphere; 2010 Feb; 78(9):1110-5. PubMed ID: 20064651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in catalytic decomposition of ozone.
    Li X; Ma J; He H
    J Environ Sci (China); 2020 Aug; 94():14-31. PubMed ID: 32563478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on Catalytic Oxidation of VOCs at Ambient Temperature.
    Zhao R; Wang H; Zhao D; Liu R; Liu S; Fu J; Zhang Y; Ding H
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Depth Understanding of the Oxidative Compatibility of Volatile Organic Compounds with Mn
    Pan T; Bai S; Zhang X; Deng H; Lu Y; Shan W; He H
    Environ Sci Technol; 2024 May; 58(21):9381-9392. PubMed ID: 38747138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic removal of toluene using MnO
    Gong P; He F; Xie J; Fang D
    Chemosphere; 2023 Mar; 318():137938. PubMed ID: 36702414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of active phase of MnO
    Nawaz F; Cao H; Xie Y; Xiao J; Chen Y; Ghazi ZA
    Chemosphere; 2017 Feb; 168():1457-1466. PubMed ID: 27923503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic oxidation of VOCs over Mn/TiO
    Shu Y; Xu Y; Huang H; Ji J; Liang S; Wu M; Leung DYC
    Chemosphere; 2018 Oct; 208():550-558. PubMed ID: 29890493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic ozonation of reverse osmosis membrane concentrates by catalytic ozonation: Properties and mechanisms.
    Sun W; Cheng Y; Xiao Z; Zhou J; Shah KJ; Sun Y
    Water Environ Res; 2024 Jun; 96(6):e11058. PubMed ID: 38831682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting Ozone Catalytic Oxidation of Toluene at Room Temperature by Using Hydroxyl-Mediated MnO
    Zhang B; Shen Y; Liu B; Ji J; Dai W; Huang P; Zhang D; Li G; Xie R; Huang H
    Environ Sci Technol; 2023 May; 57(17):7041-7050. PubMed ID: 37078822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.