These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38909446)
1. Dual-channel end-to-end network with prior knowledge embedding for improving spatial resolution of magnetic particle imaging. Wen J; An Y; Shao L; Yin L; Peng Z; Liu Y; Tian J; Du Y Comput Biol Med; 2024 Aug; 178():108783. PubMed ID: 38909446 [TBL] [Abstract][Full Text] [Related]
2. Space-Specific Mixing Excitation for High-SNR Spatial Encoding in Magnetic Particle Imaging. Liu Y; Li G; Li J; Tang Z; An Y; Tian J IEEE Trans Biomed Eng; 2024 Oct; 71(10):2889-2899. PubMed ID: 38739521 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging. Murase K Med Phys; 2020 Apr; 47(4):1845-1859. PubMed ID: 32003025 [TBL] [Abstract][Full Text] [Related]
4. MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction. Zhao J; Shen Y; Liu X; Hou X; Ding X; An Y; Hui H; Tian J; Zhang H Med Phys; 2024 Aug; 51(8):5492-5509. PubMed ID: 38700948 [TBL] [Abstract][Full Text] [Related]
5. Deep learning for improving the spatial resolution of magnetic particle imaging. Shang Y; Liu J; Zhang L; Wu X; Zhang P; Yin L; Hui H; Tian J Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35533677 [No Abstract] [Full Text] [Related]
6. RETNet: Resolution enhancement Transformer network for magnetic particle imaging based on X-space. Guo L; Ma C; Dong Z; Tian J; An Y; Liu J Comput Biol Med; 2024 Oct; 181():109043. PubMed ID: 39191080 [TBL] [Abstract][Full Text] [Related]
7. SPFS: SNR peak-based frequency selection method to alleviate resolution degradation in MPI real-time imaging. Shan S; Zhang C; Cheng M; Qi Y; Yu D; Wildgruber M; Ma X Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38593815 [No Abstract] [Full Text] [Related]
8. Trajectory analysis for field free line magnetic particle imaging. Top CB; Güngör A; Ilbey S; Güven HE Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100 [TBL] [Abstract][Full Text] [Related]
9. DERnet: a deep neural network for end-to-end reconstruction in magnetic particle imaging. Peng Z; Yin L; Sun Z; Liang Q; Ma X; An Y; Tian J; Du Y Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38064750 [No Abstract] [Full Text] [Related]
10. Transformer for low concentration image denoising in magnetic particle imaging. Liu Y; Zhang L; Wei Z; Wang T; Yang X; Tian J; Hui H Phys Med Biol; 2024 Aug; 69(17):. PubMed ID: 39137818 [No Abstract] [Full Text] [Related]
11. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging. Bente K; Weber M; Graeser M; Sattel TF; Erbe M; Buzug TM IEEE Trans Med Imaging; 2015 Feb; 34(2):644-51. PubMed ID: 25350924 [TBL] [Abstract][Full Text] [Related]
12. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain. Manoj Doss KK; Chen JC Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121 [TBL] [Abstract][Full Text] [Related]
13. System matrix recovery based on deep image prior in magnetic particle imaging. Yin L; Guo H; Zhang P; Li Y; Hui H; Du Y; Tian J Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36584394 [No Abstract] [Full Text] [Related]
14. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging. Liu J; Yang Y; Wernick MN; Pretorius PH; King MA Med Phys; 2021 Jan; 48(1):156-168. PubMed ID: 33145782 [TBL] [Abstract][Full Text] [Related]
15. A systematic 3-D magnetic particle imaging simulation model for quantitative analysis of reconstruction image quality. Shen Y; Zhang L; Hui H; Guo L; Wang T; Yang G; Tian J Comput Methods Programs Biomed; 2024 Jul; 252():108250. PubMed ID: 38815547 [TBL] [Abstract][Full Text] [Related]
16. Improved Quantitative Analysis Method for Magnetic Particle Imaging Based on Deblurring and Region Scalable Fitting. Wang L; Huang Y; Zhao Y; Tian J; Zhang L; Du Y Mol Imaging Biol; 2023 Aug; 25(4):788-797. PubMed ID: 36973569 [TBL] [Abstract][Full Text] [Related]
17. PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging. Wu X; He B; Gao P; Zhang P; Shang Y; Zhang L; Zhong J; Jiang J; Hui H; Tian J Med Phys; 2023 Apr; 50(4):2354-2371. PubMed ID: 36239207 [TBL] [Abstract][Full Text] [Related]
18. Frequency-selective signal enhancement by a passive dual coil resonator for magnetic particle imaging. Pantke D; Mueller F; Reinartz S; Philipps J; Mohammadali Dadfar S; Peters M; Franke J; Schrank F; Kiessling F; Schulz V Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35472698 [No Abstract] [Full Text] [Related]
19. Relaxation in x-space magnetic particle imaging. Croft LR; Goodwill PW; Conolly SM IEEE Trans Med Imaging; 2012 Dec; 31(12):2335-42. PubMed ID: 22968211 [TBL] [Abstract][Full Text] [Related]
20. Bimodal intravascular volumetric imaging combining OCT and MPI. Latus S; Griese F; Schlüter M; Otte C; Möddel M; Graeser M; Saathoff T; Knopp T; Schlaefer A Med Phys; 2019 Mar; 46(3):1371-1383. PubMed ID: 30657597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]