BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38909472)

  • 21. Formation and Immobilization of Cr(VI) Species in Long-Term Tannery Waste Contaminated Soils.
    Shi J; McGill WB; Chen N; Rutherford PM; Whitcombe TW; Zhang W
    Environ Sci Technol; 2020 Jun; 54(12):7226-7235. PubMed ID: 32432861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilization of Cr(VI) in Soil Using a Montmorillonite-Supported Carboxymethyl Cellulose-Stabilized Iron Sulfide Composite: Effectiveness and Biotoxicity Assessment.
    Zhang D; Xu Y; Li X; Liu Z; Wang L; Lu C; He X; Ma Y; Zou D
    Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32825647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cr(VI) immobilization in soil using lignin hydrogel supported nZVI: Immobilization mechanisms and long-term simulation.
    Liu X; Zhang S; Zhang X; Guo H; Lou Z; Zhang W; Chen Z
    Chemosphere; 2022 Oct; 305():135393. PubMed ID: 35724719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Migration of leather tannins and chromium in soils under the effect of simulated rain.
    Qiao DW; Yao J; Song LJ; Yang JY
    Chemosphere; 2021 Dec; 284():131413. PubMed ID: 34323793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of nZVI on the migration and availability of Cr(VI) in soils under simulated acid rain leaching conditions.
    Yang D; Fang W; Zhang H; Sun H; Gu X; Chen H; Luo J
    J Hazard Mater; 2024 Jun; 476():134985. PubMed ID: 38908184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies.
    Aparicio JD; Lacalle RG; Artetxe U; Urionabarrenetxea E; Becerril JM; Polti MA; Garbisu C; Soto M
    Environ Res; 2021 Mar; 194():110666. PubMed ID: 33359700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Freeze-Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils.
    Yang Z; Wang Y; Li D; Li X; Liu X
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solidification/Stabilization of Chromium-Contaminated Soils by Polyurethane during Freeze-Thaw Cycles: Mechanical, Leaching and Microstructure Characterization.
    Ma Q; Zheng P; Chen J; Lu X
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents.
    Xu R; Wang YN; Li S; Sun Y; Gao Y; Guo L; Wang H
    Ecotoxicol Environ Saf; 2023 Oct; 265():115522. PubMed ID: 37769582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction and stabilization of Cr(VI) in soil by using calcium polysulfide: Catalysis of natural iron oxides.
    Zhang T; Wang T; Wang W; Liu B; Li W; Liu Y
    Environ Res; 2020 Nov; 190():109992. PubMed ID: 32763276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field-scale studies on the change of soil microbial community structure and functions after stabilization at a chromium-contaminated site.
    Li D; Li G; Zhang D
    J Hazard Mater; 2021 Aug; 415():125727. PubMed ID: 34088197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue.
    Qing Z; Guijian L; Shuchuan P; Chuncai Z; Arif M
    Chemosphere; 2022 Oct; 305():135438. PubMed ID: 35750229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of remediation of Cr(VI)-contaminated soils by calcium polysulfide: Long-term stabilization and mechanism studies.
    Hu S; Li D; Man Y; Wen Y; Huang C
    Sci Total Environ; 2021 Oct; 790():148140. PubMed ID: 34102445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles.
    Wang T; Liu Y; Wang J; Wang X; Liu B; Wang Y
    J Environ Manage; 2019 Feb; 231():679-686. PubMed ID: 30391712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of δ-MnO
    Kong X; Wang Y; Ma L; Li H; Han Z
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45328-45337. PubMed ID: 35141831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
    Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X
    Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles.
    Hei E; He M; Zhang E; Yu H; Chen K; Qin Y; Zeng X; Zhou Z; Fan H; Shangguan Y; Wang L
    Environ Monit Assess; 2024 Apr; 196(5):448. PubMed ID: 38607467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced remediation of Cr(VI)-contaminated soil by modified zero-valent iron with oxalic acid on biochar.
    Xie L; Chen Q; Liu Y; Ma Q; Zhang J; Tang C; Duan G; Lin A; Zhang T; Li S
    Sci Total Environ; 2023 Dec; 905():167399. PubMed ID: 37793443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis.
    Reddy KR; Xu CY; Chinthamreddy S
    J Hazard Mater; 2001 Jun; 84(2-3):279-96. PubMed ID: 11406312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar.
    Zhang R; Zhang N; Fang Z
    Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.