These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38909558)

  • 1. Estimation of soil organic carbon in LUCAS soil database using Vis-NIR spectroscopy based on hybrid kernel Gaussian process regression.
    Liu B; Guo B; Zhuo R; Dai F
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 321():124687. PubMed ID: 38909558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China.
    Bai Z; Xie M; Hu B; Luo D; Wan C; Peng J; Shi Z
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil Organic Carbon Prediction Based on Vis-NIR Spectral Classification Data Using GWPCA-FCM Algorithm.
    Miao Y; Wang H; Huang X; Liu K; Sun Q; Meng L; Xu D
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating soil organic carbon content with visible-near-infrared (vis-NIR) spectroscopy.
    Gao Y; Cui L; Lei B; Zhai Y; Shi T; Wang J; Chen Y; He H; Wu G
    Appl Spectrosc; 2014; 68(7):712-22. PubMed ID: 25014837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy.
    Sun W; Li X; Niu B
    PLoS One; 2018; 13(4):e0196198. PubMed ID: 29677214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Laser-Induced Breakdown Spectroscopy and Visible Near-Infrared Spectroscopy for Predicting Soil Organic Carbon and Texture: A Danish National-Scale Study.
    Wangeci A; Adén D; Nikolajsen T; Greve MH; Knadel M
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection.
    Shi T; Chen Y; Liu H; Wang J; Wu G
    Appl Spectrosc; 2014; 68(8):831-7. PubMed ID: 25061784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
    Zhao MS; Wang T; Lu Y; Wang S; Wu Y
    PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?
    Biney JKM; Blöcher JR; Bell SM; Borůvka L; Vašát R
    Sci Total Environ; 2022 Sep; 838(Pt 3):156304. PubMed ID: 35649456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra.
    Yang M; Xu D; Chen S; Li H; Shi Z
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30641879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy.
    Ding J; Yang A; Wang J; Sagan V; Yu D
    PeerJ; 2018; 6():e5714. PubMed ID: 30357023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled Vis-NIR spectroscopy with chemometrics strategy for soil organic carbon prediction in the Agro-pastoral Transitional zone of northwest China.
    Dong Z; Wang N; Xie J; Ke X
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124496. PubMed ID: 38796895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features.
    Wang Z; Ding J; Zhang Z
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tropical altitudinal gradient soil organic carbon and nitrogen estimation using Specim IQ portable imaging spectrometer.
    Pellikka P; Luotamo M; Sädekoski N; Hietanen J; Vuorinne I; Räsänen M; Heiskanen J; Siljander M; Karhu K; Klami A
    Sci Total Environ; 2023 Jul; 883():163677. PubMed ID: 37105488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content?
    Moura-Bueno JM; Dalmolin RSD; Horst-Heinen TZ; Ten Caten A; Vasques GM; Dotto AC; Grunwald S
    Sci Total Environ; 2020 Oct; 737():139895. PubMed ID: 32783826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis-NIR Spectroscopy.
    Xu S; Shi X; Wang M; Zhao Y
    PLoS One; 2016; 11(3):e0151536. PubMed ID: 26974821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling.
    Semella S; Hutengs C; Seidel M; Ulrich M; Schneider B; Ortner M; Thiele-Bruhn S; Ludwig B; Vohland M
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy.
    Paltseva AA; Deeb M; Di Iorio E; Circelli L; Cheng Z; Colombo C
    Sci Total Environ; 2022 Feb; 809():151107. PubMed ID: 34688767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental variables improve the accuracy of remote sensing estimation of soil organic carbon content.
    Xiao X; He Q; Ma S; Liu J; Sun W; Lin Y; Yi R
    Sci Rep; 2024 Aug; 14(1):18964. PubMed ID: 39152170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral prediction of soil salinity and alkalinity indicators using visible, near-, and mid-infrared spectroscopy.
    Lotfollahi L; Delavar MA; Biswas A; Fatehi S; Scholten T
    J Environ Manage; 2023 Nov; 345():118854. PubMed ID: 37647733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.