These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 3890957)
21. NADPH-dependent reductases in dog thyroid: comparison of a third enzyme "glyceraldehyde reductase" to dog thyroid aldehyde reductase. Schaffhauser MA; Sato S; Kador PF Int J Biochem Cell Biol; 1996 Mar; 28(3):275-84. PubMed ID: 8920636 [TBL] [Abstract][Full Text] [Related]
22. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase. Bohren KM; von Wartburg JP; Wermuth B Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957 [TBL] [Abstract][Full Text] [Related]
23. Identification of pig brain aldehyde reductases with the high-Km aldehyde reductase, the low-Km aldehyde reductase and aldose reductase, carbonyl reductase, and succinic semialdehyde reductase. Cromlish JA; Flynn TG J Neurochem; 1985 May; 44(5):1485-93. PubMed ID: 3886845 [TBL] [Abstract][Full Text] [Related]
24. A novel NADPH-dependent carbonyl reductase of Candida macedoniensis: purification and characterization. Kataoka M; Doi Y; Sim TS; Shimizu S; Yamada H Arch Biochem Biophys; 1992 May; 294(2):469-74. PubMed ID: 1567202 [TBL] [Abstract][Full Text] [Related]
25. Human brain aldehyde reductases: relationship to succinic semialdehyde reductase and aldose reductase. Hoffman PL; Wermuth B; von Wartburg JP J Neurochem; 1980 Aug; 35(2):354-66. PubMed ID: 6778961 [TBL] [Abstract][Full Text] [Related]
26. Human kidney aldose and aldehyde reductases. Sato S; Kador PF J Diabetes Complications; 1993; 7(3):179-87. PubMed ID: 8343612 [TBL] [Abstract][Full Text] [Related]
27. Characterization of aldose reductase and aldehyde reductase from the medulla of rat kidney. Ohta M; Tanimoto T; Tanaka A Chem Pharm Bull (Tokyo); 1990 Jun; 38(6):1639-43. PubMed ID: 2119895 [TBL] [Abstract][Full Text] [Related]
28. Purification of aldose reductase from human placenta and stabilization of the inhibitor binding site. Vander Jagt DL; Stangebye LA; Hunsaker LA; Eaton RP; Sibbitt WL Biochem Pharmacol; 1988 Mar; 37(6):1051-6. PubMed ID: 3128293 [TBL] [Abstract][Full Text] [Related]
29. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. Bohren KM; Bullock B; Wermuth B; Gabbay KH J Biol Chem; 1989 Jun; 264(16):9547-51. PubMed ID: 2498333 [TBL] [Abstract][Full Text] [Related]
30. Purification and properties of NADPH-dependent aldehyde reductase from human liver. Wermuth B; Münch JD; von Wartburg JP J Biol Chem; 1977 Jun; 252(11):3821-8. PubMed ID: 16919 [TBL] [Abstract][Full Text] [Related]
31. Reductases for carbonyl compounds in human liver. Nakayama T; Hara A; Yashiro K; Sawada H Biochem Pharmacol; 1985 Jan; 34(1):107-17. PubMed ID: 3881099 [TBL] [Abstract][Full Text] [Related]
32. Spectral properties of human placental aldose reductase and aldehyde reductase II. Das B; Bhatnagar A; Liu SQ; Srivastava SK; Messmer M; Ueno N; Chakrabarti B Biochem Int; 1989 Sep; 19(3):497-504. PubMed ID: 2510724 [TBL] [Abstract][Full Text] [Related]
33. Metabolism of 2-oxoaldehyde in mold. Purification and characterization of two methylglyoxal reductases from Aspergillus niger. Inoue Y; Rhee H; Watanabe K; Murata K; Kimura A Eur J Biochem; 1988 Jan; 171(1-2):213-8. PubMed ID: 3276516 [TBL] [Abstract][Full Text] [Related]
34. Purification and characterization of four NADPH-dependent aldehyde reductases from pig brain. Cromlish JA; Yoshimoto CK; Flynn TG J Neurochem; 1985 May; 44(5):1477-84. PubMed ID: 3886844 [TBL] [Abstract][Full Text] [Related]
35. Aldehyde and aldose reductases from human placenta. Heterogeneous expression of multiple enzyme forms. Vander Jagt DL; Hunsaker LA; Robinson B; Stangebye LA; Deck LM J Biol Chem; 1990 Jul; 265(19):10912-8. PubMed ID: 2113526 [TBL] [Abstract][Full Text] [Related]
36. Monkey 3-deoxyglucosone reductase: tissue distribution and purification of three multiple forms of the kidney enzyme that are identical with dihydrodiol dehydrogenase, aldehyde reductase, and aldose reductase. Sato K; Inazu A; Yamaguchi S; Nakayama T; Deyashiki Y; Sawada H; Hara A Arch Biochem Biophys; 1993 Dec; 307(2):286-94. PubMed ID: 8274014 [TBL] [Abstract][Full Text] [Related]
37. Kinetic mechanisms in the reduction of aldehydes and ketones catalyzed by rabbit liver aldehyde reductases and hydroxysteroid dehydrogenases. Sawada H; Hara A; Nakayama T; Hayashibara M J Biochem; 1982 Jul; 92(1):185-91. PubMed ID: 6749832 [TBL] [Abstract][Full Text] [Related]
38. Conversion of a NADPH-dependent aldehyde reducing enzyme into aldose reductase. Ohta M; Tanimoto T; Tanaka A; Hayakawa T Int J Biochem; 1993 Aug; 25(8):1165-74. PubMed ID: 8405658 [TBL] [Abstract][Full Text] [Related]