These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38910097)

  • 21. Immune Conversion of Tumor Microenvironment by Oncolytic Viruses: The Protoparvovirus H-1PV Case Study.
    Marchini A; Daeffler L; Pozdeev VI; Angelova A; Rommelaere J
    Front Immunol; 2019; 10():1848. PubMed ID: 31440242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of microenvironment on tumor immunotherapy.
    Zhang J; Shi Z; Xu X; Yu Z; Mi J
    FEBS J; 2019 Nov; 286(21):4160-4175. PubMed ID: 31365790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systemic immunity in cancer.
    Hiam-Galvez KJ; Allen BM; Spitzer MH
    Nat Rev Cancer; 2021 Jun; 21(6):345-359. PubMed ID: 33837297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prodrug-loaded semiconducting polymer hydrogels for deep-tissue sono-immunotherapy of orthotopic glioblastoma.
    Zhu L; Wang X; Ding M; Yu N; Zhang Y; Wu H; Zhang Q; Liu J; Li J
    Biomater Sci; 2023 Oct; 11(20):6823-6833. PubMed ID: 37623749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineered Nanomaterials for Tumor Immune Microenvironment Modulation in Cancer Immunotherapy.
    Xing H; Li X
    Chemistry; 2024 Jun; 30(32):e202400425. PubMed ID: 38576219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sono-Driven STING Activation using Semiconducting Polymeric Nanoagonists for Precision Sono-Immunotherapy of Head and Neck Squamous Cell Carcinoma.
    Jiang J; Zhang M; Lyu T; Chen L; Wu M; Li R; Li H; Wang X; Jiang X; Zhen X
    Adv Mater; 2023 Jul; 35(30):e2300854. PubMed ID: 37119091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy.
    Devillier R; Chrétien AS; Pagliardini T; Salem N; Blaise D; Olive D
    J Leukoc Biol; 2021 Jun; 109(6):1071-1088. PubMed ID: 32991746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy.
    Liu Y; Bai L; Guo K; Jia Y; Zhang K; Liu Q; Wang P; Wang X
    Theranostics; 2019; 9(18):5261-5281. PubMed ID: 31410214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment.
    Hsu SK; Li CY; Lin IL; Syue WJ; Chen YF; Cheng KC; Teng YN; Lin YH; Yen CH; Chiu CC
    Theranostics; 2021; 11(18):8813-8835. PubMed ID: 34522213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunogenic PANoptosis-Initiated Cancer Sono-Immune Reediting Nanotherapy by Iteratively Boosting Cancer Immunity Cycle.
    Zhou L; Lyu J; Liu F; Su Y; Feng L; Zhang X
    Adv Mater; 2024 Jan; 36(2):e2305361. PubMed ID: 37699593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy.
    Wei G; Zhang H; Zhao H; Wang J; Wu N; Li L; Wu J; Zhang D
    Cancer Lett; 2021 Jul; 511():68-76. PubMed ID: 33957184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ANTICANCER IMMUNOGENIC POTENTIAL OF ONCOLYTIC PEPTIDES: RECENT ADVANCES AND NEW PROSPECTS.
    Khranovska N; Skachkova O; Gorbach O; Semchuk I; Shvets Y; Komarov I
    Exp Oncol; 2024 May; 46(1):3-12. PubMed ID: 38852058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunogenic cell death-based cancer vaccines: promising prospect in cancer therapy.
    Wang J; Ma J; Xie F; Miao F; Lv L; Huang Y; Zhang X; Yu J; Tai Z; Zhu Q; Bao L
    Front Immunol; 2024; 15():1389173. PubMed ID: 38745666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sono-Immunotherapy Mediated Controllable Composite Nano Fluorescent Probes Reprogram the Immune Microenvironment of Hepatocellular Carcinoma.
    Chen Y; Wu B; Shang H; Sun Y; Tian H; Yang H; Wang C; Wang X; Cheng W
    Int J Nanomedicine; 2023; 18():6059-6073. PubMed ID: 37908671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.
    Zhang M; Kim JA; Huang AY
    Front Immunol; 2018; 9():341. PubMed ID: 29535722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting galectins in T cell-based immunotherapy within tumor microenvironment.
    Jin QY; Li YS; Qiao XH; Yang JW; Guo XL
    Life Sci; 2021 Jul; 277():119426. PubMed ID: 33785342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Innate Immune Cells and Their Contribution to T-Cell-Based Immunotherapy.
    Ginefra P; Lorusso G; Vannini N
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32580431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid bilayer-based biological nanoplatforms for sonodynamic cancer therapy.
    Li S; Mok GSP; Dai Y
    Adv Drug Deliv Rev; 2023 Nov; 202():115110. PubMed ID: 37820981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boosting Sono-immunotherapy of Prostate Carcinoma through Amplifying Domino-Effect of Mitochondrial Oxidative Stress Using Biodegradable Cascade-Targeting Nanocomposites.
    Wang Y; Li H; Niu G; Li Y; Huang Z; Cheng S; Zhang K; Li H; Fu Q; Jiang Y
    ACS Nano; 2024 Feb; ():. PubMed ID: 38332473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perspectives on Recent Progress in Focused Ultrasound Immunotherapy.
    Sheybani ND; Price RJ
    Theranostics; 2019; 9(25):7749-7758. PubMed ID: 31695798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.