These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38910363)

  • 21. The importance of expert review to clarify ambiguous situations for (Q)SAR predictions under ICH M7.
    Foster RS; Fowkes A; Cayley A; Thresher A; Werner AD; Barber CG; Kocks G; Tennant RE; Williams RV; Kane S; Stalford SA
    Genes Environ; 2020; 42():27. PubMed ID: 32983286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An ensemble model of QSAR tools for regulatory risk assessment.
    Pradeep P; Povinelli RJ; White S; Merrill SJ
    J Cheminform; 2016; 8():48. PubMed ID: 28316646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel phototoxicity assay using human embryonic stem cell-derived retinal pigment epithelial cells.
    Mori T; Higashi K; Nakano T; Ando S; Kuwahara A; Suzuki N; Saito K
    Toxicology; 2017 Mar; 378():1-9. PubMed ID: 28082110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The OECD QSAR Toolbox Starts Its Second Decade.
    Schultz TW; Diderich R; Kuseva CD; Mekenyan OG
    Methods Mol Biol; 2018; 1800():55-77. PubMed ID: 29934887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An evaluation of the predictive ability of the QSAR software packages, DEREK, HAZARDEXPERT and TOPKAT, to describe chemically-induced skin irritation.
    Mombelli E
    Altern Lab Anim; 2008 Feb; 36(1):15-24. PubMed ID: 18333711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of rodent carcinogenicity using the DEREK system for 30 chemicals currently being tested by the National Toxicology Program. The DEREK Collaborative Group.
    Marchant CA
    Environ Health Perspect; 1996 Oct; 104 Suppl 5(Suppl 5):1065-73. PubMed ID: 8933056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals.
    Takenouchi O; Fukui S; Okamoto K; Kurotani S; Imai N; Fujishiro M; Kyotani D; Kato Y; Kasahara T; Fujita M; Toyoda A; Sekiya D; Watanabe S; Seto H; Hirota M; Ashikaga T; Miyazawa M
    J Appl Toxicol; 2015 Nov; 35(11):1318-32. PubMed ID: 25820183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of two biological systems used for phototoxicity testing: Cellular and tissue.
    Krakowian D; Żemła P; Gądarowska D; Mrzyk I
    Toxicol Appl Pharmacol; 2024 Aug; 489():117014. PubMed ID: 38914165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds.
    Alves VM; Muratov E; Fourches D; Strickland J; Kleinstreuer N; Andrade CH; Tropsha A
    Toxicol Appl Pharmacol; 2015 Apr; 284(2):262-72. PubMed ID: 25560674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of in silico models for prediction of mutagenicity.
    Bakhtyari NG; Raitano G; Benfenati E; Martin T; Young D
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(1):45-66. PubMed ID: 23534394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of phototoxicity of tattoo pigments using the 3 T3 neutral red uptake phototoxicity test and a 3D human reconstructed skin model.
    Kim SY; Seo S; Choi KH; Yun J
    Toxicol In Vitro; 2020 Jun; 65():104813. PubMed ID: 32119999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applicability of an Integrated Testing Strategy consisting of in silico, in chemico and in vitro assays for evaluating the skin sensitization potencies of isocyanates.
    Ohtake T; Maeda Y; Hayashi T; Yamanaka H; Nakai M; Takeyoshi M
    Toxicology; 2018 Jan; 393():9-14. PubMed ID: 29100879
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Chushak YG; Shows HW; Gearhart JM; Pangburn HA
    Toxicol Res (Camb); 2018 May; 7(3):423-431. PubMed ID: 30090592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 3T3 neutral red uptake phototoxicity test: practical experience and implications for phototoxicity testing--the report of an ECVAM-EFPIA workshop.
    Ceridono M; Tellner P; Bauer D; Barroso J; Alépée N; Corvi R; De Smedt A; Fellows MD; Gibbs NK; Heisler E; Jacobs A; Jirova D; Jones D; Kandárová H; Kasper P; Akunda JK; Krul C; Learn D; Liebsch M; Lynch AM; Muster W; Nakamura K; Nash JF; Pfannenbecker U; Phillips G; Robles C; Rogiers V; Van De Water F; Liminga UW; Vohr HW; Wattrelos O; Woods J; Zuang V; Kreysa J; Wilcox P
    Regul Toxicol Pharmacol; 2012 Aug; 63(3):480-8. PubMed ID: 22687423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR.
    Greene N; Judson PN; Langowski JJ; Marchant CA
    SAR QSAR Environ Res; 1999; 10(2-3):299-314. PubMed ID: 10491855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The International EU/COLIPA In Vitro Phototoxicity Validation Study: Results of Phase II (Blind Trial). Part 1: The 3T3 NRU Phototoxicity Test.
    Spielmann H; Balls M; Dupuis J; Pape WJ; Pechovitch G; de Silva O; Holzhütter HG; Clothier R; Desolle P; Gerberick F; Liebsch M; Lovell WW; Maurer T; Pfannenbecker U; Potthast JM; Csato M; Sladowski D; Steiling W; Brantom P
    Toxicol In Vitro; 1998 Jun; 12(3):305-27. PubMed ID: 20654413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A defined approach for predicting skin sensitisation hazard and potency based on the guided integration of in silico, in chemico and in vitro data using exclusion criteria.
    Macmillan DS; Chilton ML
    Regul Toxicol Pharmacol; 2019 Feb; 101():35-47. PubMed ID: 30439387
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 May; 5(3):773-787. PubMed ID: 30090388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MLtox, online phototoxicity prediction webpage.
    Halinkovič M; Mušková K; Sloboda T; Lepáček M; Kanďárová H; Ries M; Šoltésová Prnová M
    Toxicol In Vitro; 2024 Feb; 94():105701. PubMed ID: 37820749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a GCN-based model to predict in vitro phototoxicity from the chemical structure and HOMO-LUMO gap.
    Igarashi Y; Re S; Kojima R; Okuno Y; Yamada H
    J Toxicol Sci; 2023; 48(5):243-249. PubMed ID: 37121739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.