These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38910407)

  • 1. Mathematical modelling of fracture waves in a blocky medium with thin compliant interlayers.
    Sadovskaya OV; Sadovskii VM
    Philos Trans A Math Phys Eng Sci; 2024 Jul; 382(2275):20230305. PubMed ID: 38910407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model and numerical analysis method for dynamic fracture in a residual stress field.
    Hirobe S; Imakita K; Aizawa H; Kato Y; Urata S; Oguni K
    Phys Rev E; 2021 Aug; 104(2-2):025001. PubMed ID: 34525581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-mechanical fracture dynamics and damage modelling in brittle materials.
    Gomez Q; Ionescu IR
    Philos Trans A Math Phys Eng Sci; 2021 May; 379(2196):20200125. PubMed ID: 33715417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-smooth variational problems and applications.
    Kovtunenko VA; Itou H; Khludnev AM; Rudoy EM
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2236):20210364. PubMed ID: 36154476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks.
    Zhao Y; Li F; Cao P; Liu Y; Zhang J; Fu S; Zhang J; Hu N
    Ultrasonics; 2017 Aug; 79():60-67. PubMed ID: 28433810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strongly anisotropic surface elasticity and antiplane surface waves.
    Eremeyev VA
    Philos Trans A Math Phys Eng Sci; 2020 Jan; 378(2162):20190100. PubMed ID: 31760900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Numerical Study of Elastic Wave Arrival Behavior in a Naturally Fractured Rock Based on a Combined Displacement Discontinuity-Discrete Fracture Network Model.
    Wang S; Zhang Z; Huang X; Lei Q
    Rock Mech Rock Eng; 2023; 56(4):2717-2736. PubMed ID: 37008575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.
    Guo X; Wei P; Lan M; Li L
    Ultrasonics; 2016 Aug; 70():158-71. PubMed ID: 27179141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation in disordered fractured porous media.
    Hamzehpour H; Kasani FH; Sahimi M; Sepehrinia R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023301. PubMed ID: 25353599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational framework for crack propagation in spatially heterogeneous materials.
    Lewandowski K; Kaczmarczyk Ł; Athanasiadis I; Marshall JF; Pearce CJ
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200291. PubMed ID: 34148414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic wave propagation in heterogeneous two-dimensional fractured porous media.
    Hamzehpour H; Asgari M; Sahimi M
    Phys Rev E; 2016 Jun; 93(6):063305. PubMed ID: 27415385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-Field Fracture Modelling of Thin Monolithic and Laminated Glass Plates under Quasi-Static Bending.
    Schmidt J; Zemanová A; Zeman J; Šejnoha M
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ogden and the extended tube model as backbone in describing electroactive polymers: advancements in modelling nonlinear behaviour and fracture.
    Kaliske M; Storm J; Kanan A; Klausler W
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210329. PubMed ID: 36031832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach.
    Shen Y; Cesnik CE
    Ultrasonics; 2017 Feb; 74():106-123. PubMed ID: 27770666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of Longitudinal Elastic Wave Propagation in a Steel Rod Using the Discrete Element Method.
    Knak M; Nitka M; Wojtczak E; Rucka M
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poroelastic modeling of seismic boundary conditions across a fracture.
    Nakagawa S; Schoenberg MA
    J Acoust Soc Am; 2007 Aug; 122(2):831-47. PubMed ID: 17672634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of a normally-incident plane wave with a nonlinear poroelastic fracture.
    Nakagawa S; Pride SR; Nihei KT
    J Acoust Soc Am; 2019 Sep; 146(3):1705. PubMed ID: 31590557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagating Schallamach-type waves resemble interface cracks.
    Ansari MA; Viswanathan K
    Phys Rev E; 2022 Apr; 105(4-2):045002. PubMed ID: 35590575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (Bi)-orthogonality relation for eigenfunctions of self-adjoint operators.
    Ledet LS; Sorokin SV
    Philos Trans A Math Phys Eng Sci; 2019 Oct; 377(2156):20190112. PubMed ID: 31474209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks.
    Golub MV; Zhang C
    J Acoust Soc Am; 2015 Jan; 137(1):238-52. PubMed ID: 25618055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.