BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38910409)

  • 1. Harnessing conformational dynamics in enzyme catalysis to achieve nature-like catalytic efficiencies: the shortest path map tool for computational enzyme redesign.
    Duran C; Casadevall G; Osuna S
    Faraday Discuss; 2024 Jun; ():. PubMed ID: 38910409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating conformational heterogeneity of tryptophan synthase with a template-based Alphafold2 approach.
    Casadevall G; Duran C; Estévez-Gay M; Osuna S
    Protein Sci; 2022 Oct; 31(10):e4426. PubMed ID: 36173176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The shortest path method (SPM) webserver for computational enzyme design.
    Casadevall G; Casadevall J; Duran C; Osuna S
    Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 38431867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution.
    Tian C; Kasavajhala K; Belfon KAA; Raguette L; Huang H; Migues AN; Bickel J; Wang Y; Pincay J; Wu Q; Simmerling C
    J Chem Theory Comput; 2020 Jan; 16(1):528-552. PubMed ID: 31714766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale molecular dynamics simulations of rotary motor proteins.
    Ekimoto T; Ikeguchi M
    Biophys Rev; 2018 Apr; 10(2):605-615. PubMed ID: 29204882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epoxide Hydrolase Conformational Heterogeneity for the Resolution of Bulky Pharmacologically Relevant Epoxide Substrates.
    Serrano-Hervás E; Casadevall G; Garcia-Borràs M; Feixas F; Osuna S
    Chemistry; 2018 Aug; 24(47):12254-12258. PubMed ID: 29633396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A distal regulatory strategy of enzymes: from local to global conformational dynamics.
    Peng X; Lu C; Pang J; Liu Z; Lu D
    Phys Chem Chem Phys; 2021 Oct; 23(39):22451-22465. PubMed ID: 34585687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Selective Novel Hits against
    Nyamai DW; Tastan Bishop Ö
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32471245
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Maria-Solano MA; Kinateder T; Iglesias-Fernández J; Sterner R; Osuna S
    ACS Catal; 2021 Nov; 11(21):13733-13743. PubMed ID: 34777912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of transferable forcefields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization.
    Abriata LA; Dal Peraro M
    Comput Struct Biotechnol J; 2021; 19():2626-2636. PubMed ID: 34025949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting new protein conformations from molecular dynamics simulation conformational landscapes and machine learning.
    Jin Y; Johannissen LO; Hay S
    Proteins; 2021 Feb; ():. PubMed ID: 33629765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover.
    McGowan LC; Hamelberg D
    Biophys J; 2013 Jan; 104(1):216-26. PubMed ID: 23332074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of conformational dynamics in the evolution of novel enzyme function.
    Maria-Solano MA; Serrano-Hervás E; Romero-Rivera A; Iglesias-Fernández J; Osuna S
    Chem Commun (Camb); 2018 Jun; 54(50):6622-6634. PubMed ID: 29780987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Structure Prediction for Protein Loops Based on Molecular Dynamics Simulations with RSFF2C.
    Feng JJ; Chen JN; Kang W; Wu YD
    J Chem Theory Comput; 2021 Jul; 17(7):4614-4628. PubMed ID: 34170125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods.
    Dong SS; Goddard WA; Abrol R
    Methods Cell Biol; 2017; 142():173-186. PubMed ID: 28964335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.