These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38910487)

  • 1. Synthetic Methods of Quinoxaline Derivatives and their Potential Anti-inflammatory Properties.
    - A; Kamboj P; Amir M
    Mini Rev Med Chem; 2024 Jun; ():. PubMed ID: 38910487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinoxaline: A Chemical Moiety with Spectrum of Interesting Biological Activities.
    Sharma A; Deep A; Marwaha MG; Marwaha RK
    Mini Rev Med Chem; 2022; 22(6):927-948. PubMed ID: 34579634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities.
    Farghaly TA; Alqurashi RM; Masaret GS; Abdulwahab HG
    Mini Rev Med Chem; 2024; 24(9):920-982. PubMed ID: 37885112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis, biological evaluation, and in silico studies of quinoxaline derivatives as potent p38α MAPK inhibitors.
    Anjali ; Kamboj P; Alam O; Patel H; Ahmad I; Ahmad SS; Amir M
    Arch Pharm (Weinheim); 2024 Jan; 357(1):e2300301. PubMed ID: 37847883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1,4-di-N-oxide scaffold.
    Agrawal N; Bhardwaj A
    Chem Biol Drug Des; 2022 Sep; 100(3):346-363. PubMed ID: 35610776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety.
    Tariq S; Alam O; Amir M
    Bioorg Chem; 2018 Feb; 76():343-358. PubMed ID: 29227918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme.
    Fabian L; Taverna Porro M; Gómez N; Salvatori M; Turk G; Estrin D; Moglioni A
    Eur J Med Chem; 2020 Feb; 188():111987. PubMed ID: 31893549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinoxaline and quinoxaline-1,4-di-N-oxides: An emerging class of antimycobacterials.
    Keri RS; Pandule SS; Budagumpi S; Nagaraja BM
    Arch Pharm (Weinheim); 2018 May; 351(5):e1700325. PubMed ID: 29611626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in design of potential quinoxaline anti-infectives.
    Jampilek J
    Curr Med Chem; 2014; 21(38):4347-73. PubMed ID: 25312209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives.
    Patel SB; Patel BD; Pannecouque C; Bhatt HG
    Eur J Med Chem; 2016 Jul; 117():230-40. PubMed ID: 27105027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and evaluation of novel synthetic 5-alkyl-4-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoxaline-1-carbox-amide derivatives as anti-inflammatory agents.
    Shen QK; Gong GH; Li G; Jin M; Cao LH; Quan ZS
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):85-95. PubMed ID: 31707866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quinoxaline-Based Scaffolds Targeting Tyrosine Kinases and Their Potential Anticancer Activity.
    El Newahie AM; Ismail NS; Abou El Ella DA; Abouzid KA
    Arch Pharm (Weinheim); 2016 May; 349(5):309-26. PubMed ID: 27062086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinoxaline Moiety: A Potential Scaffold against
    Montana M; Montero V; Khoumeri O; Vanelle P
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443334
    [No Abstract]   [Full Text] [Related]  

  • 14. Quinoxaline Derivatives as Antiviral Agents: A Systematic Review.
    Montana M; Montero V; Khoumeri O; Vanelle P
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1,3-Thiazole Derivatives as a Promising Scaffold in Medicinal Chemistry: A Recent Overview.
    Kushwaha P; Pandey S
    Antiinflamm Antiallergy Agents Med Chem; 2023; 22(3):133-163. PubMed ID: 37997807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quinoxaline Nucleus: A Promising Scaffold in Anti-cancer Drug Discovery.
    Pinheiro AC; Mendonça Nogueira TC; de Souza MV
    Anticancer Agents Med Chem; 2016; 16(10):1339-52. PubMed ID: 27349448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-inflammatory activity of Khayandirobilide A from Khaya senegalensis via NF-κB, AP-1 and p38 MAPK/Nrf2/HO-1 signaling pathways in lipopolysaccharide-stimulated RAW 264.7 and BV-2 cells.
    Zhou MM; Zhang WY; Li RJ; Guo C; Wei SS; Tian XM; Luo J; Kong LY
    Phytomedicine; 2018 Mar; 42():152-163. PubMed ID: 29655681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explore new quinoxaline pharmacophore tethered sulfonamide fragments as in vitro α-glucosidase, α-amylase, and acetylcholinesterase inhibitors with ADMET and molecular modeling simulation.
    Ragab A; Salem MA; Ammar YA; Aboulthana WM; Helal MH; Abusaif MS
    Drug Dev Res; 2024 Jun; 85(4):e22216. PubMed ID: 38831547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of quinoxaline-1,3,4-oxadiazole hybrid derivatives as potent inhibitors of the anti-apoptotic Bcl-2 protein.
    Ono Y; Ninomiya M; Kaneko D; Sonawane AD; Udagawa T; Tanaka K; Nishina A; Koketsu M
    Bioorg Chem; 2020 Nov; 104():104245. PubMed ID: 32911196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades.
    Khatoon H; Abdulmalek E
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33670436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.