These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 3891096)

  • 1. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.
    Patthy L
    Cell; 1985 Jul; 41(3):657-63. PubMed ID: 3891096
    [No Abstract]   [Full Text] [Related]  

  • 2. Exon and domain evolution in the proenzymes of blood coagulation and fibrinolysis.
    Blake CC; Harlos K; Holland SK
    Cold Spring Harb Symp Quant Biol; 1987; 52():925-31. PubMed ID: 3454300
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure and function of protein C.
    Stenflo J
    Semin Thromb Hemost; 1984 Apr; 10(2):109-21. PubMed ID: 6429858
    [No Abstract]   [Full Text] [Related]  

  • 4. CoagMDB: a database analysis of missense mutations within four conserved domains in five vitamin K-dependent coagulation serine proteases using a text-mining tool.
    Saunders RE; Perkins SJ
    Hum Mutat; 2008 Mar; 29(3):333-44. PubMed ID: 18058827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different evolutionary histories of kringle and protease domains in serine proteases: a typical example of domain evolution.
    Ikeo K; Takahashi K; Gojobori T
    J Mol Evol; 1995 Mar; 40(3):331-6. PubMed ID: 7723060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator.
    Bányai L; Váradi A; Patthy L
    FEBS Lett; 1983 Oct; 163(1):37-41. PubMed ID: 6685059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of intact modules from noncatalytic parts of vitamin K-dependent coagulation factors IX and X and protein C.
    Valcarce C; Persson E; Astermark J; Ohlin AK; Stenflo J
    Methods Enzymol; 1993; 222():416-35. PubMed ID: 8412808
    [No Abstract]   [Full Text] [Related]  

  • 8. Bacillolysin MA, a novel bacterial metalloproteinase that produces angiostatin-like fragments from plasminogen and activates protease zymogens in the coagulation and fibrinolysis systems.
    Narasaki R; Kuribayashi H; Shimizu K; Imamura D; Sato T; Hasumi K
    J Biol Chem; 2005 Apr; 280(14):14278-87. PubMed ID: 15677446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and organization of the human protein C gene.
    Plutzky J; Hoskins JA; Long GL; Crabtree GR
    Proc Natl Acad Sci U S A; 1986 Feb; 83(3):546-50. PubMed ID: 3511471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and sequencing of liver cDNA coding for bovine protein C.
    Long GL; Belagaje RM; MacGillivray RT
    Proc Natl Acad Sci U S A; 1984 Sep; 81(18):5653-6. PubMed ID: 6091100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and evolution of the human genes encoding protein C and coagulation factors VII, IX, and X.
    Long GL
    Cold Spring Harb Symp Quant Biol; 1986; 51 Pt 1():525-9. PubMed ID: 3472738
    [No Abstract]   [Full Text] [Related]  

  • 12. Epidermal growth factor-like domains in the vitamin K-dependent clotting factors. Some structure-function relationships.
    Stenflo J; Ohlin AK; Persson E; Valcarce C; Astermark J; Drakenberg T; Selander M; Linse S; Björk I
    Ann N Y Acad Sci; 1991; 614():11-29. PubMed ID: 2024878
    [No Abstract]   [Full Text] [Related]  

  • 13. Serine-proteases as plasminogen activators in terms of fibrinolysis.
    Flemmig M; Melzig MF
    J Pharm Pharmacol; 2012 Aug; 64(8):1025-39. PubMed ID: 22775207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution of the vertebrate blood coagulation network.
    Davidson CJ; Hirt RP; Lal K; Snell P; Elgar G; Tuddenham EG; McVey JH
    Thromb Haemost; 2003 Mar; 89(3):420-8. PubMed ID: 12624623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of the proteins participating in blood coagulation and fibrinolysis.
    Davie EW; Ichinose A; Leytus SP
    Cold Spring Harb Symp Quant Biol; 1986; 51 Pt 1():509-14. PubMed ID: 3555973
    [No Abstract]   [Full Text] [Related]  

  • 16. Substrate composition and the effect of epsilon-aminocaproic acid on tissue plasminogen activator and urokinase-induced fibrinolysis.
    Thorsen S; Astrup T
    Thromb Diath Haemorrh; 1974 Dec; 32(2-3):306-24. PubMed ID: 4281113
    [No Abstract]   [Full Text] [Related]  

  • 17. Comprehensive analysis of blood coagulation pathways in teleostei: evolution of coagulation factor genes and identification of zebrafish factor VIIi.
    Hanumanthaiah R; Day K; Jagadeeswaran P
    Blood Cells Mol Dis; 2002; 29(1):57-68. PubMed ID: 12482404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structure, function and use of fibrinolysis-promoting and inhibiting factors].
    Bachmann F
    Arzneimittelforschung; 1988 Mar; 38(3A):474-8. PubMed ID: 3134901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the relative fibrinogenolytic, fibrinolytic and thrombolytic properties of tissue plasminogen activator and urokinase in vitro.
    Matsuo O; Rijken DC; Collen D
    Thromb Haemost; 1981 Jun; 45(3):225-9. PubMed ID: 7025339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of amino acid sequence of bovine coagulation Factor IX (Christmas Factor) with that of other vitamin K-dependent plasma proteins.
    Katayama K; Ericsson LH; Enfield DL; Walsh KA; Neurath H; Davie EW; Titani K
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4990-4. PubMed ID: 291916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.