BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38911769)

  • 1. Advanced Molecular Dynamics Model for Investigating Biological-Origin Microfibril Structures.
    Ponnuchamy V; Sandak A; Sandak J
    ACS Omega; 2024 Jun; 9(24):25646-25654. PubMed ID: 38911769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Adsorption in Wood Microfibril-Hemicellulose System: Role of the Crystalline-Amorphous Interface.
    Kulasinski K; Guyer R; Derome D; Carmeliet J
    Biomacromolecules; 2015 Sep; 16(9):2972-8. PubMed ID: 26313656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Mechanism of Moisture-Induced Swelling in Wood Microfibril Bundles.
    Paajanen A; Zitting A; Rautkari L; Ketoja JA; Penttilä PA
    Nano Lett; 2022 Jul; 22(13):5143-5150. PubMed ID: 35767745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the biomechanical properties of wood related to the fine structure of the multi-layered cell wall.
    Yamamoto H; Kojima Y; Okuyama T; Abasolo WP; Gril J
    J Biomech Eng; 2002 Aug; 124(4):432-40. PubMed ID: 12188209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures.
    Viell J; Inouye H; Szekely NK; Frielinghaus H; Marks C; Wang Y; Anders N; Spiess AC; Makowski L
    Biotechnol Biofuels; 2016; 9():7. PubMed ID: 26752999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Origin of Strength and Stiffness in Bamboo Fibrils.
    Youssefian S; Rahbar N
    Sci Rep; 2015 Jun; 5():11116. PubMed ID: 26054045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial microfibril arrangements in wood cell walls.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Planta; 2022 Sep; 256(4):75. PubMed ID: 36087126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress.
    Altaner CM; Jarvis MC
    J Theor Biol; 2008 Aug; 253(3):434-45. PubMed ID: 18485371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological wood. Part II: hardwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2009 Jul; 63(7):753-8. PubMed ID: 19589212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy reveals how relative humidity impacts the Young's modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale.
    Marcuello C; Foulon L; Chabbert B; Aguié-Béghin V; Molinari M
    Int J Biol Macromol; 2020 Mar; 147():1064-1075. PubMed ID: 31743709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy.
    Peng H; Salmén L; Stevanic JS; Lu J
    Planta; 2019 Jul; 250(1):163-171. PubMed ID: 30953149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of different wood-based microfibril cellulose for the preparation of reinforced hydrophobic polymer composite films via Pickering emulsion: A comparative study.
    Xu C; Xu N; Yu J; Hu L; Jia P; Fan Y; Lu C; Chu F
    Int J Biol Macromol; 2023 Feb; 227():815-826. PubMed ID: 36521716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concomitant changes in viscoelastic properties and amorphous polymers during the hydrothermal treatment of hardwood and softwood.
    Assor C; Placet V; Chabbert B; Habrant A; Lapierre C; Pollet B; Perré P
    J Agric Food Chem; 2009 Aug; 57(15):6830-7. PubMed ID: 19618934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Moisture Content on Ion Diffusion and Glass Transition Temperature in Wood Cell Walls.
    Youssefian S; Vandadi M; Jakes JE; Rahbar N
    Biomacromolecules; 2024 Feb; 25(2):666-674. PubMed ID: 38194667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted Organosolv pretreatment of a sawmill mixed feedstock for bioethanol production in a wood biorefinery.
    Alio MA; Tugui OC; Vial C; Pons A
    Bioresour Technol; 2019 Mar; 276():170-176. PubMed ID: 30623872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization.
    Lichtenegger H; Reiterer A; Stanzl-Tschegg SE; Fratzl P
    J Struct Biol; 1999 Dec; 128(3):257-69. PubMed ID: 10633065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructural deformation of high-stiffness spruce wood under tension.
    Thomas LH; Altaner CM; Forsyth VT; Mossou E; Kennedy CJ; Martel A; Jarvis MC
    Sci Rep; 2021 Jan; 11(1):453. PubMed ID: 33432070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular architecture of softwood revealed by solid-state NMR.
    Terrett OM; Lyczakowski JJ; Yu L; Iuga D; Franks WT; Brown SP; Dupree R; Dupree P
    Nat Commun; 2019 Oct; 10(1):4978. PubMed ID: 31673042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological objects. Part I: softwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2008 Nov; 62(11):1209-15. PubMed ID: 19007461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degree of polymerization of glucan chains shapes the structure fluctuations and melting thermodynamics of a cellulose microfibril.
    Chang R; Gross AS; Chu JW
    J Phys Chem B; 2012 Jul; 116(28):8074-83. PubMed ID: 22725724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.