BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38911788)

  • 1. Efficient Electrochemical Hydrogenation of Furfural to Furfuryl Alcohol Using an Anion-Exchange Membrane Electrolysis Cell.
    Han S; Lee Y; Woo J; Jang J; Sung YE; Yoon J
    ACS Omega; 2024 Jun; 9(24):26285-26292. PubMed ID: 38911788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes.
    Kaczur JJ; Yang H; Liu Z; Sajjad SD; Masel RI
    Front Chem; 2018; 6():263. PubMed ID: 30018951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Electrocatalytic Reduction of Furfural to Furfuryl Alcohol in a Microchannel Flow Reactor.
    Cao Y; Noël T
    Org Process Res Dev; 2019 Mar; 23(3):403-408. PubMed ID: 30906184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-phase hydrogenation of furfural into value-added chemicals: The critical role of metal-based catalysts.
    Vikrant K; Kim KH
    Sci Total Environ; 2023 Dec; 904():166882. PubMed ID: 37678523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer engineering of molybdenum disulfide toward efficient electrocatalytic hydrogenation.
    Tan J; Zhang W; Shu Y; Lu H; Tang Y; Gao Q
    Sci Bull (Beijing); 2021 May; 66(10):1003-1012. PubMed ID: 36654245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic reduction of furfural to furfuryl alcohol using carbon nanofibers supported zinc cobalt bimetallic oxide with surface-derived zinc vacancies in alkaline medium.
    Qin M; Fan S; Li X; Duan J; Chen G
    J Colloid Interface Sci; 2024 Apr; 660():800-809. PubMed ID: 38277837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Hydrogenation of Furfural in Aqueous Acetic Acid Media with Enhanced 2-Methylfuran Selectivity Using CuPd Bimetallic Catalysts.
    Zhou P; Li L; Mosali VSS; Chen Y; Luan P; Gu Q; Turner DR; Huang L; Zhang J
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202117809. PubMed ID: 35043530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inchoate horizon of electrolyzer designs, membranes and catalysts towards highly efficient electrochemical reduction of CO
    Senthilkumar P; Mohapatra M; Basu S
    RSC Adv; 2022 Jan; 12(3):1287-1309. PubMed ID: 35425201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the synthesis of polymetallic-doped ZIF derived materials for efficient hydrogenation of furfural to furfuryl alcohol.
    Fan Y; Li S; Wang Y; Zhuang C; Liu X; Zhu G; Zou X
    Nanoscale; 2020 Sep; 12(35):18296-18304. PubMed ID: 32857827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-Assisted Selective Hydrogenation of Furfural to Furfuryl Alcohol Employing a Green and Noble Metal-Free Copper Catalyst.
    Romano PN; de Almeida JM; Carvalho Y; Priecel P; Falabella Sousa-Aguiar E; Lopez-Sanchez JA
    ChemSusChem; 2016 Dec; 9(24):3387-3392. PubMed ID: 27981784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh Metal Content Carbon-Based Catalyst for Efficient Hydrogenation of Furfural: The Regulatory Effect of Glycerol.
    Zhai Z; Chu J; Sun L; Zhao X; Huang D; Yang X; Zhuang C; Min C; Wang Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44439-44449. PubMed ID: 36129173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.
    Audemar M; Ciotonea C; De Oliveira Vigier K; Royer S; Ungureanu A; Dragoi B; Dumitriu E; Jérôme F
    ChemSusChem; 2015 Jun; 8(11):1885-91. PubMed ID: 25891431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Highly Stable Ni
    Kuhaudomlap S; Mekasuwandumrong O; Praserthdam P; Lee KM; Jones CW; Panpranot J
    ACS Omega; 2023 Jan; 8(1):249-261. PubMed ID: 36643509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the catalytic performance of Co-N-C derived from ZIF-67 by mesoporous silica encapsulation for chemoselective hydrogenation of furfural.
    Zhao J; Li X; Zhang M; Xu Z; Qin X; Liu Y; Han L; Li G
    Nanoscale; 2023 Mar; 15(9):4612-4619. PubMed ID: 36763350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium-free Cu@Mg/γ-Al
    Arundhathi R; Reddy PL; Samanta C; Newalkar BL
    RSC Adv; 2020 Nov; 10(67):41120-41126. PubMed ID: 35519200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Operational Conditions' Effect on the Performance of an Anion Exchange Membrane Water Electrolyzer: Electrochemical Impedance Spectroscopy Study.
    Pushkareva IV; Solovyev MA; Butrim SI; Kozlova MV; Simkin DA; Pushkarev AS
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Interfacial Water in CO
    Wei P; Li H; Li R; Wang Y; Liu T; Cai R; Gao D; Wang G; Bao X
    Small; 2023 Jun; 19(25):e2300856. PubMed ID: 36932891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Cheng Y; Hou P; Wang X; Kang P
    Acc Chem Res; 2022 Feb; 55(3):231-240. PubMed ID: 35045254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state water electrolysis with an alkaline membrane.
    Leng Y; Chen G; Mendoza AJ; Tighe TB; Hickner MA; Wang CY
    J Am Chem Soc; 2012 Jun; 134(22):9054-7. PubMed ID: 22587676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic Hydrogenation of Guaiacol in Diverse Electrolytes Using a Stirred Slurry Reactor.
    Wijaya YP; Grossmann-Neuhaeusler T; Dhewangga Putra RD; Smith KJ; Kim CS; Gyenge EL
    ChemSusChem; 2020 Feb; 13(3):629-639. PubMed ID: 31886627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.