These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38911799)

  • 1. Effects of Nanocomposite Derivatives of Ni-Fe, Ni-Co, Ni-Co-Fe Prussian Blue Analogues on the Thermal Decomposition Performance of Nitrocellulose.
    Liu J; Liu Z; Yang J; Xu B; Chen F; Liao X
    ACS Omega; 2024 Jun; 9(24):25655-25667. PubMed ID: 38911799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties.
    Luo T; Wang Y; Huang H; Shang F; Song X
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31167442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation.
    Trávníček Z; Zbořil R; Matiková-Maľarová M; Drahoš B; Cernák J
    Chem Cent J; 2013; 7():28. PubMed ID: 23391378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Decomposition Behavior and Thermal Safety of Nitrocellulose with Different Shape CuO and Al/CuONanothermites.
    Yao E; Zhao N; Qin Z; Ma H; Li H; Xu S; An T; Yi J; Zhao F
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Pb(ii) and Cr(vi) from aqueous solutions using the prepared porous adsorbent-supported Fe/Ni nanoparticles.
    Liu J; Dai M; Song S; Peng C
    RSC Adv; 2018 Sep; 8(56):32063-32072. PubMed ID: 35547524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melamine-based metal-organic frameworks for high-performance supercapacitor applications.
    Vanaraj R; Daniel S; Mayakrishnan G; Govindarasu Gunasekaran K; Arumugam B; Babu CM; Kim SC
    J Colloid Interface Sci; 2024 Jul; 666():380-392. PubMed ID: 38603880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosorbent based on coprecipitation of ZnO in goethite for competitive sorption of Cd(II)-Pb(II) and Cd(II)-Pb(II)-Ni(II) systems.
    Godwin J; Njimou JR; Abdus-Salam N; Adegoke HI; Panda PK; Tripathy BC; Maicaneanu SA
    J Environ Health Sci Eng; 2024 Jun; 22(1):149-165. PubMed ID: 38887757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal Synthesis of Hematite Nanoparticles Decorated on Carbon Mesospheres and Their Synergetic Action on the Thermal Decomposition of Nitrocellulose.
    Benhammada A; Trache D; Kesraoui M; Chelouche S
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane Decomposition Over ZrO
    Fakeeha AH; Kasim SO; Ibrahim AA; Al-Awadi AS; Alzahrani E; Abasaeed AE; Awadallah AE; Al-Fatesh AS
    Front Chem; 2020; 8():317. PubMed ID: 32411666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced formaldehyde oxidation over MnO
    Huang Y; Zhu X; Wang D; Hui S
    Environ Res; 2023 Dec; 238(Pt 2):117265. PubMed ID: 37775009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of particle size on thermal decomposition of nitrocellulose.
    Sovizi MR; Hajimirsadeghi SS; Naderizadeh B
    J Hazard Mater; 2009 Sep; 168(2-3):1134-9. PubMed ID: 19398264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Synthesis of the Energetic Combustion Catalyst Co(BODN)·9H
    Gou X; Liu W; Xu Y; Ma Z; Zhang X; Zhang J
    Langmuir; 2023 Dec; 39(48):17498-17512. PubMed ID: 37983616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, preparation, and combustion performance of energetic catalysts based on transition metal ions (Cu
    Liu W; Xu Y; Zhang Y; Zheng H; Gou X; Xiao F
    RSC Adv; 2023 Sep; 13(38):26563-26573. PubMed ID: 37674483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of cesium and strontium for radioactive wastewater by Prussian blue nanorods.
    Yao C; Dai Y; Chang S; Zhang H
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):36807-36823. PubMed ID: 36564688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prussian Blue Microcrystals with Morphology Evolution as a High-Performance Photo-Fenton Catalyst for Degradation of Organic Pollutants.
    Wang N; Ma W; Du Y; Ren Z; Han B; Zhang L; Sun B; Xu P; Han X
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1174-1184. PubMed ID: 30556394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of NO
    Chen J; Pu G; Li J
    ACS Omega; 2020 May; 5(20):11784-11791. PubMed ID: 32478269
    [No Abstract]   [Full Text] [Related]  

  • 18. Preparation of new adsorbent-supported Fe/Ni particles for the removal of crystal violet and methylene blue by a heterogeneous Fenton-like reaction.
    Liu J; Du Y; Sun W; Chang Q; Peng C
    RSC Adv; 2019 Jul; 9(39):22513-22522. PubMed ID: 35519486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues.
    Li WJ; Han C; Cheng G; Chou SL; Liu HK; Dou SX
    Small; 2019 Aug; 15(32):e1900470. PubMed ID: 30977287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermal and energetic properties of NC-based nanocomposites with silane functionalized GO.
    Lu T; Zhao B; Liu Y; Yan Z; Wang Y; Fu X; Yan QL
    Dalton Trans; 2021 Dec; 50(47):17766-17773. PubMed ID: 34813635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.