These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38911943)

  • 21. Effect of Loop Defects on the High Strain Rate Behavior of PEGDA Hydrogels: A Molecular Dynamics Study.
    Luo K; Wangari C; Subhash G; Spearot DE
    J Phys Chem B; 2020 Mar; 124(10):2029-2039. PubMed ID: 32040323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Counting primary loops in polymer gels.
    Zhou H; Woo J; Cok AM; Wang M; Olsen BD; Johnson JA
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19119-24. PubMed ID: 23132947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topological indices and patterns in iron telluride networks.
    Yang H; Hanif MF; Siddiqui MK; Hanif MF; Ahmed H; Fufa SA
    Sci Rep; 2024 Jun; 14(1):14297. PubMed ID: 38906950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macroscopic and Microscopic Elasticity of Heterogeneous Polymer Gels.
    Di Lorenzo F; Hellwig J; von Klitzing R; Seiffert S
    ACS Macro Lett; 2015 Jul; 4(7):698-703. PubMed ID: 35596490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microphase behaviors and shear moduli of double-network gels: The effect of crosslinking constraints and chain uncrossability.
    Zhang J; Yan D; Qi S
    J Chem Phys; 2023 Mar; 158(11):114906. PubMed ID: 36948820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformation of Network Strands in Polymer Gels.
    Beech HK; Johnson JA; Olsen BD
    ACS Macro Lett; 2023 Mar; 12(3):325-330. PubMed ID: 36802508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ideal reversible polymer networks.
    Parada GA; Zhao X
    Soft Matter; 2018 Jun; 14(25):5186-5196. PubMed ID: 29780993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple Dynamic Processes Contribute to the Complex Steady Shear Behavior of Cross-Linked Supramolecular Networks of Semidilute Entangled Polymer Solutions.
    Xu D; Craig SL
    J Phys Chem Lett; 2010 Jun; 1(11):1683-1686. PubMed ID: 20606721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytoskeleton-inspired artificial protein design to enhance polymer network elasticity.
    Knoff DS; Szczublewski H; Altamirano D; Cortes KAF; Kim M
    Macromolecules; 2020 May; 53(9):3464-3471. PubMed ID: 32601508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational study of imperfect networks using a coarse-grained model.
    Sliozberg YR; Chantawansri TL
    J Chem Phys; 2013 Nov; 139(19):194904. PubMed ID: 24320352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theory of Flexible Polymer Networks: Elasticity and Heterogeneities.
    Panyukov S
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32244601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Comparison between Predictions of the Miller-Macosko Theory, Estimates from Molecular Dynamics Simulations, and Long-Standing Experimental Data of the Shear Modulus of End-Linked Polymer Networks.
    Tsimouri IC; Schwarz F; Bernhard T; Gusev AA
    Macromolecules; 2024 May; 57(9):4273-4284. PubMed ID: 38765498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-triggered topological programmability in a dynamic covalent polymer network.
    Zou W; Jin B; Wu Y; Song H; Luo Y; Huang F; Qian J; Zhao Q; Xie T
    Sci Adv; 2020 Mar; 6(13):eaaz2362. PubMed ID: 32258406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactivity-Guided Depercolation Processes Determine Fracture Behavior in End-Linked Polymer Networks.
    Beech HK; Wang S; Sen D; Rota D; Kouznetsova TB; Arora A; Rubinstein M; Craig SL; Olsen BD
    ACS Macro Lett; 2023 Dec; 12(12):1685-1691. PubMed ID: 38038127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes.
    Yang H; Tang M; Gross T
    Sci Rep; 2015 Aug; 5():13122. PubMed ID: 26293740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying the impact of molecular defects on polymer network elasticity.
    Zhong M; Wang R; Kawamoto K; Olsen BD; Johnson JA
    Science; 2016 Sep; 353(6305):1264-8. PubMed ID: 27634530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competing Effects of Molecular Additives and Cross-Link Density on the Segmental Dynamics and Mechanical Properties of Cross-Linked Polymers.
    Nie W; Douglas JF; Xia W
    ACS Eng Au; 2023 Dec; 3(6):512-526. PubMed ID: 38144677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Computer Simulation Study of Thermal and Mechanical Properties of Poly(Ionic Liquid)s.
    Shim Y; Shim M; Kim DS
    Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adding the Effect of Topological Defects to the Flory-Rehner and Bray-Merrill Swelling Theories.
    Rebello NJ; Beech HK; Olsen BD
    ACS Macro Lett; 2021 May; 10(5):531-537. PubMed ID: 35570765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization.
    Gao Y; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Dec; 12(48):9738-9748. PubMed ID: 27869283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.