These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38912511)

  • 1. Anti-icing performance of hydrophobic coatings on stainless steel surfaces.
    Wang H; Cao P; Xu S; Cui G; Chen Z; Yin Q
    Heliyon; 2024 Jun; 10(11):e32319. PubMed ID: 38912511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-Infused Micro-Nanostructured MOF Coatings (LIMNSMCs) with High Anti-Icing Performance.
    Gao J; Zhang Y; Wei W; Yin Y; Liu M; Guo H; Zheng C; Deng P
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47545-47552. PubMed ID: 31755252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.
    Chen T; Cong Q; Qi Y; Jin J; Choy KL
    PLoS One; 2018; 13(1):e0188775. PubMed ID: 29385390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion.
    Shen Y; Wu Y; Tao J; Zhu C; Chen H; Wu Z; Xie Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3590-3598. PubMed ID: 30589262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Preparation Methods and Nanomaterials on Hydrophobicity and Anti-Icing Performance of Nanoparticle/Epoxy Coatings.
    Liu S; Wang H; Yang J
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings.
    Tian S; Li R; Liu X; Wang J; Yu J; Xu S; Tian Y; Yang J; Zhang L
    Research (Wash D C); 2023; 6():0140. PubMed ID: 37214197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles.
    Chanda J; Ionov L; Kirillova A; Synytska A
    Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application.
    Vicente A; Rivero PJ; Rehfeld N; Stake A; García P; Carreño F; Mora J; Rodríguez R
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust and Superhydrophobic Polydimethylsiloxane/Ni@Ti
    Chen J; Chen X; Hao Z; Wu Z; Selim MS; Yu J; Huang Y
    ACS Appl Mater Interfaces; 2024 May; 16(20):26713-26732. PubMed ID: 38723291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances.
    Wu B; Cui X; Jiang H; Wu N; Peng C; Hu Z; Liang X; Yan Y; Huang J; Li D
    J Colloid Interface Sci; 2021 May; 590():301-310. PubMed ID: 33548613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mussel-Inspired Fabrication of an Environment-Friendly and Self-Adhesive Superhydrophobic Polydopamine Coating with Excellent Mechanical Durability, Anti-Icing and Self-Cleaning Performances.
    Tian J; Qi X; Li C; Xian G
    ACS Appl Mater Interfaces; 2023 May; 15(21):26000-26015. PubMed ID: 37192267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Intrinsic Self-Healing Poly-Silicone-Urea with Super-Low Ice Adhesion Strength.
    Chen J; Luo Z; An R; Marklund P; Björling M; Shi Y
    Small; 2022 Jun; 18(22):e2200532. PubMed ID: 35318812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorine-free preparation of a superhydrophobic coating with anti-icing properties, mechanical durability and self-cleaning effect.
    Yu M; Li X; Tan X; Chen X
    Soft Matter; 2023 Jan; 19(4):766-775. PubMed ID: 36625158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogels as Durable Anti-Icing Coatings Inhibit and Delay Ice Nucleation.
    Huang B; Jiang S; Diao Y; Liu X; Liu W; Chen J; Yang H
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multilayer Photothermal Superhydrophobic Anti-Icing Coating Applied to Asphalt Pavement with Remarkable Wear Resistance.
    Peng C; Yang D; You Z; Ruan D; Guan P; Ye Z; Ning Y; Zhao N; Yang F
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35588-35603. PubMed ID: 38924072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric Ice Adhesion on Water-Repellent Coatings: Wetting and Surface Topology Effects.
    Yeong YH; Milionis A; Loth E; Sokhey J; Lambourne A
    Langmuir; 2015 Dec; 31(48):13107-16. PubMed ID: 26566168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Composite Material with Energy Storage, Electro/Photo-Thermal and Robust Super-Hydrophobic Properties for High-Efficiency Anti-Icing/De-Icing.
    Zhao Z; Wang Y; Wang Z; Cui X; Liu G; Zhang Y; Zhu Y; Chen J; Sun S; Zhang K; Liu X; Chen H
    Small; 2024 Aug; 20(31):e2311435. PubMed ID: 38461533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Synthesis of Fluorinated Polysilazanes and Their Durable Icephobicity on Rough Al Surfaces.
    Lo TNH; Hong SW; Hwang HS; Park I
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Anti/De-Icing Performance on Rough Surfaces Based on The Synergistic Effect of Fluorinated Resin and Embedded Graphene.
    Zhang R; Ding Z; Wang K; Zhang H; Li J
    Small Methods; 2024 Jul; 8(7):e2301262. PubMed ID: 38227388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions.
    Emelyanenko AM; Boinovich LB; Bezdomnikov AA; Chulkova EV; Emelyanenko KA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24210-24219. PubMed ID: 28657289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.