These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38912547)

  • 1. Asymmetric ion transport through "Janus" MoSSe sub-nanometer pores.
    Chakraborty R; Crawford-Eng HT; Leburton JP
    Nanoscale; 2024 Jul; 16(27):13106-13120. PubMed ID: 38912547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion Trapping and Thermionic Emission across Sub-nm Pores.
    Xiong M; Athreya N; Chakraborty R; Leburton JP
    Nano Lett; 2023 Dec; 23(24):11719-11726. PubMed ID: 38078825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation.
    Montes de Oca JM; Dhanasekaran J; Córdoba A; Darling SB; de Pablo JJ
    ACS Nano; 2022 Mar; 16(3):3768-3775. PubMed ID: 35230815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers.
    Guo JX; Wu SY; Zhong SY; Zhang GJ; Yu XY; Wu LN
    Phys Chem Chem Phys; 2021 May; 23(18):11004-11014. PubMed ID: 33942039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore.
    Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C
    Elife; 2021 Oct; 10():. PubMed ID: 34713805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance.
    Gurtovenko AA; Vattulainen I
    Biophys J; 2007 Mar; 92(6):1878-90. PubMed ID: 17208976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolytic transport through a synthetic nanometer-diameter pore.
    Ho C; Qiao R; Heng JB; Chatterjee A; Timp RJ; Aluru NR; Timp G
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10445-50. PubMed ID: 16020525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of external electric field on the sensing property of volatile organic compounds over Janus MoSSe monolayer: a first-principles investigation.
    Yeh CH; Chen YT; Hsieh DW
    RSC Adv; 2021 Oct; 11(53):33276-33287. PubMed ID: 35497532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice-distorted lithiation behavior of a square phase Janus MoSSe monolayer for electrode applications.
    Tang X; Ye H; Liu W; Liu Y; Guo Z; Wang M
    Nanoscale Adv; 2021 May; 3(10):2902-2910. PubMed ID: 36134199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic aspects of iontophoresis in human epidermal membrane.
    Higuchi WI; Li SK; Ghanem AH; Zhu H; Song Y
    J Control Release; 1999 Nov; 62(1-2):13-23. PubMed ID: 10518630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Strain and Electric Field on Molecular Doping in MoSSe.
    Zeng J; Liu G; Han Y; Luo W; Wu M; Xu B; Ouyang C
    ACS Omega; 2021 Jun; 6(22):14639-14647. PubMed ID: 34124487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Catalytic Activity of "Janus" MoSSe Based on Surface Interface Regulation.
    Wang M; Wang X; Zheng M; Zhou X
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BlueP encapsulated Janus MoSSe as a promising heterostructure anode material for LIBs.
    Barik G; Pal S
    Phys Chem Chem Phys; 2024 Jul; 26(26):18054-18066. PubMed ID: 38895793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Photoinduced Interlayer Charge Transfer and Spatial Separation in Type-II Heterostructure of WS
    Ma H; Wang Z; Zhao W; Ren H; Zhu H; Chi Y; Guo W
    J Phys Chem Lett; 2022 Sep; 13(36):8484-8494. PubMed ID: 36054827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective and sensitive toxic gas-sensing mechanism in a 2D Janus MoSSe monolayer.
    Babariya B; Raval D; Gupta SK; Gajjar PN
    Phys Chem Chem Phys; 2022 Jun; 24(25):15292-15304. PubMed ID: 35703165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.