These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38912627)

  • 21. The Interplay between the Theories of Mode Coupling and of Percolation Transition in Attractive Colloidal Systems.
    Mallamace F; Mensitieri G; Salzano de Luna M; Lanzafame P; Papanikolaou G; Mallamace D
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theory for Glassy Behavior of Supercooled Liquid Mixtures.
    Katira S; Garrahan JP; Mandadapu KK
    Phys Rev Lett; 2019 Sep; 123(10):100602. PubMed ID: 31573293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005f model.
    Guillaud E; Merabia S; de Ligny D; Joly L
    Phys Chem Chem Phys; 2017 Jan; 19(3):2124-2130. PubMed ID: 28045157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis.
    Frey S; Weysser F; Meyer H; Farago J; Fuchs M; Baschnagel J
    Eur Phys J E Soft Matter; 2015 Feb; 38(2):97. PubMed ID: 25715952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the dynamic crossover temperature and the arrest in glass-forming fluids.
    Mallamace F; Corsaro C; Stanley HE; Chen SH
    Eur Phys J E Soft Matter; 2011 Sep; 34(9):94. PubMed ID: 21947896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition.
    Chong SH; Chen SH; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504101. PubMed ID: 21836212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-component generalized mode-coupling theory: predicting dynamics from structure in glassy mixtures.
    Ciarella S; Luo C; Debets VE; Janssen LMC
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):91. PubMed ID: 34231080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relaxation dynamics of a viscous silica melt: the intermediate scattering functions.
    Horbach J; Kob W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041503. PubMed ID: 11690029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics in supercooled ionic organic liquids and mode coupling theory analysis.
    Li J; Wang I; Fruchey K; Fayer MD
    J Phys Chem A; 2006 Sep; 110(35):10384-91. PubMed ID: 16942043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signatures of fragile-to-strong transition in a binary metallic glass-forming liquid.
    Lad KN; Jakse N; Pasturel A
    J Chem Phys; 2012 Mar; 136(10):104509. PubMed ID: 22423850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations.
    Berthier L; Biroli G; Bouchaud JP; Kob W; Miyazaki K; Reichman DR
    J Chem Phys; 2007 May; 126(18):184504. PubMed ID: 17508808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water vapor absorption into amorphous sucrose-poly(vinyl pyrrolidone) and trehalose-poly(vinyl pyrrolidone) mixtures.
    Zhang J; Zografi G
    J Pharm Sci; 2001 Sep; 90(9):1375-85. PubMed ID: 11745790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures.
    Weng L; Elliott GD
    Phys Chem Chem Phys; 2014 Jun; 16(23):11555-65. PubMed ID: 24803351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generalized mode-coupling theory for mixtures of Brownian particles.
    Debets VE; Luo C; Ciarella S; Janssen LMC
    Phys Rev E; 2021 Dec; 104(6-2):065302. PubMed ID: 35030832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generalized mode-coupling theory of the glass transition. II. Analytical scaling laws.
    Luo C; Janssen LMC
    J Chem Phys; 2020 Dec; 153(21):214506. PubMed ID: 33291926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MD simulations of charged binary mixtures reveal a generic relation between high- and low-temperature behavior.
    Hecht L; Horstmann R; Liebchen B; Vogel M
    J Chem Phys; 2021 Jan; 154(2):024501. PubMed ID: 33445919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slow dynamics of a confined supercooled binary mixture: direct space analysis.
    Gallo P; Pellarin R; Rovere M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041202. PubMed ID: 12786348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glass-transition asymptotics in two theories of glassy dynamics: Self-consistent generalized Langevin equation and mode-coupling theory.
    Elizondo-Aguilera LF; Voigtmann T
    Phys Rev E; 2019 Oct; 100(4-1):042601. PubMed ID: 31770981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mode coupling theory description of the short- and long-time dynamics of nematogens in the isotropic phase.
    Li J; Cang H; Andersen HC; Fayer MD
    J Chem Phys; 2006 Jan; 124(1):14902. PubMed ID: 16409058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.