BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38912680)

  • 1. Dielectric Screening inside Carbon Nanotubes.
    Gordeev G; Wasserroth S; Li H; Jorio A; Flavel BS; Reich S
    Nano Lett; 2024 Jun; ():. PubMed ID: 38912680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.
    Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS
    Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying single-wall carbon nanotubes through encapsulation: from optical methods till magnetic resonance.
    Simon F
    J Nanosci Nanotechnol; 2007; 7(4-5):1197-220. PubMed ID: 17450887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Cluster Size-Dependent Activation Energies of Growth of Single-Chirality Single-Walled Carbon Nanotubes inside Metallocene-Filled Single-Walled Carbon Nanotubes.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type.
    Kalbac M; Green AA; Hersam MC; Kavan L
    Chemistry; 2011 Aug; 17(35):9806-15. PubMed ID: 21774002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning of sorted double-walled carbon nanotubes by electrochemical charging.
    Kalbac M; Green AA; Hersam MC; Kavan L
    ACS Nano; 2010 Jan; 4(1):459-69. PubMed ID: 20050694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroelectrochemistry of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical charging of individual single-walled carbon nanotubes.
    Kalbac M; Farhat H; Kavan L; Kong J; Sasaki K; Saito R; Dresselhaus MS
    ACS Nano; 2009 Aug; 3(8):2320-8. PubMed ID: 19645423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting configurations.
    Villalpando-Paez F; Son H; Nezich D; Hsieh YP; Kong J; Kim YA; Shimamoto D; Muramatsu H; Hayashi T; Endo M; Terrones M; Dresselhaus MS
    Nano Lett; 2008 Nov; 8(11):3879-86. PubMed ID: 18937518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type.
    Green AA; Hersam MC
    ACS Nano; 2011 Feb; 5(2):1459-67. PubMed ID: 21280609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion.
    Kim YA; Kojima M; Muramatsu H; Umemoto S; Watanabe T; Yoshida K; Sato K; Ikeda T; Hayashi T; Endo M; Terrones M; Dresselhaus MS
    Small; 2006 May; 2(5):667-76. PubMed ID: 17193105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitonic effects and optical spectra of single-walled carbon nanotubes.
    Spataru CD; Ismail-Beigi S; Benedict LX; Louie SG
    Phys Rev Lett; 2004 Feb; 92(7):077402. PubMed ID: 14995885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic polymers of C(60) inside single-walled carbon nanotubes.
    Pichler T; Kuzmany H; Kataura H; Achiba Y
    Phys Rev Lett; 2001 Dec; 87(26):267401. PubMed ID: 11800854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.
    Hirschmann TCh; Araujo PT; Muramatsu H; Zhang X; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2013 Mar; 7(3):2381-7. PubMed ID: 23311296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective breakdown of metallic pathways in double-walled carbon nanotube networks.
    Ng AL; Sun Y; Powell L; Sun CF; Chen CF; Lee CS; Wang Y
    Small; 2015 Jan; 11(1):96-102. PubMed ID: 25180916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band gap modification and photoluminescence enhancement of graphene nanoribbon filled single-walled carbon nanotubes.
    Chernov AI; Fedotov PV; Lim HE; Miyata Y; Liu Z; Sato K; Suenaga K; Shinohara H; Obraztsova ED
    Nanoscale; 2018 Feb; 10(6):2936-2943. PubMed ID: 29369315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.