These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38913520)
1. SkinFormer: Learning Statistical Texture Representation With Transformer for Skin Lesion Segmentation. Xu R; Wang C; Zhang J; Xu S; Meng W; Zhang X IEEE J Biomed Health Inform; 2024 Oct; 28(10):6008-6018. PubMed ID: 38913520 [TBL] [Abstract][Full Text] [Related]
2. LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation. Lama N; Stanley RJ; Lama B; Maurya A; Nambisan A; Hagerty J; Phan T; Van Stoecker W J Imaging Inform Med; 2024 Aug; 37(4):1812-1823. PubMed ID: 38409610 [TBL] [Abstract][Full Text] [Related]
3. Intelligent skin lesion segmentation using deformable attention Transformer U-Net with bidirectional attention mechanism in skin cancer images. Cai L; Hou K; Zhou S Skin Res Technol; 2024 Aug; 30(8):e13783. PubMed ID: 39113617 [TBL] [Abstract][Full Text] [Related]
4. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556 [TBL] [Abstract][Full Text] [Related]
5. MASDF-Net: A Multi-Attention Codec Network with Selective and Dynamic Fusion for Skin Lesion Segmentation. Fu J; Deng H Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205066 [TBL] [Abstract][Full Text] [Related]
6. Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images. Kaur R; GholamHosseini H; Sinha R; Lindén M BMC Med Imaging; 2022 May; 22(1):103. PubMed ID: 35644612 [TBL] [Abstract][Full Text] [Related]
7. Fully Convolutional Neural Networks to Detect Clinical Dermoscopic Features. Kawahara J; Hamarneh G IEEE J Biomed Health Inform; 2019 Mar; 23(2):578-585. PubMed ID: 29994053 [TBL] [Abstract][Full Text] [Related]
8. ETU-Net: edge enhancement-guided U-Net with transformer for skin lesion segmentation. Chen L; Li J; Zou Y; Wang T Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38131313 [No Abstract] [Full Text] [Related]
9. Improving Dermoscopic Image Segmentation with Enhanced Convolutional-Deconvolutional Networks. Yuan Y; Lo YC IEEE J Biomed Health Inform; 2019 Mar; 23(2):519-526. PubMed ID: 29990146 [TBL] [Abstract][Full Text] [Related]
10. [Application of a parallel branches network based on Transformer for skin melanoma segmentation]. Yi S; Zhang G; He J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Oct; 39(5):937-944. PubMed ID: 36310482 [TBL] [Abstract][Full Text] [Related]
11. An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis. Song L; Lin J; Wang ZJ; Wang H IEEE J Biomed Health Inform; 2020 Oct; 24(10):2912-2921. PubMed ID: 32071016 [TBL] [Abstract][Full Text] [Related]
12. Melanoma recognition in dermoscopy images using lesion's peripheral region information. Tajeddin NZ; Asl BM Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849 [TBL] [Abstract][Full Text] [Related]
13. Active Contours Based Segmentation and Lesion Periphery Analysis For Characterization of Skin Lesions in Dermoscopy Images. Riaz F; Naeem S; Nawaz R; Coimbra MT IEEE J Biomed Health Inform; 2019 Mar; 23(2):489-500. PubMed ID: 29993589 [TBL] [Abstract][Full Text] [Related]
14. TG-Net: Using text prompts for improved skin lesion segmentation. Meng X; Yu C; Zhang Z; Zhang X; Wang M Comput Biol Med; 2024 Sep; 179():108819. PubMed ID: 38964245 [TBL] [Abstract][Full Text] [Related]