BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38913544)

  • 21. Hyperactivity of the
    Orth C; Niemann N; Hennig L; Essen LO; Batschauer A
    J Biol Chem; 2017 Aug; 292(31):12906-12920. PubMed ID: 28634231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP binding turns plant cryptochrome into an efficient natural photoswitch.
    Müller P; Bouly JP; Hitomi K; Balland V; Getzoff ED; Ritz T; Brettel K
    Sci Rep; 2014 Jun; 4():5175. PubMed ID: 24898692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Analytic Second Derivative of Electrostatic Embedding QM/MM Energy: Normal Mode Analysis of Plant Cryptochrome.
    Schwinn K; Ferré N; Huix-Rotllant M
    J Chem Theory Comput; 2020 Jun; 16(6):3816-3824. PubMed ID: 32320612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural insights into photoactivation of plant Cryptochrome-2.
    Palayam M; Ganapathy J; Guercio AM; Tal L; Deck SL; Shabek N
    Commun Biol; 2021 Jan; 4(1):28. PubMed ID: 33398020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarizable embedding for simulating redox potentials of biomolecules.
    Tazhigulov RN; Gurunathan PK; Kim Y; Slipchenko LV; Bravaya KB
    Phys Chem Chem Phys; 2019 Jun; 21(22):11642-11650. PubMed ID: 31116217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ascorbic acid may not be involved in cryptochrome-based magnetoreception.
    Nielsen C; Kattnig DR; Sjulstok E; Hore PJ; Solov'yov IA
    J R Soc Interface; 2017 Dec; 14(137):. PubMed ID: 29263128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase.
    Kao YT; Tan C; Song SH; Oztürk N; Li J; Wang L; Sancar A; Zhong D
    J Am Chem Soc; 2008 Jun; 130(24):7695-701. PubMed ID: 18500802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna.
    Klar T; Pokorny R; Moldt J; Batschauer A; Essen LO
    J Mol Biol; 2007 Feb; 366(3):954-64. PubMed ID: 17188299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast Oxidation of a Tyrosine by Proton-Coupled Electron Transfer Promotes Light Activation of an Animal-like Cryptochrome.
    Lacombat F; Espagne A; Dozova N; Plaza P; Müller P; Brettel K; Franz-Badur S; Essen LO
    J Am Chem Soc; 2019 Aug; 141(34):13394-13409. PubMed ID: 31368699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Explanations of Flavin Adenine Dinucleotide Binding in
    Sjulstok E; Solov'yov IA
    J Phys Chem Lett; 2020 May; 11(10):3866-3870. PubMed ID: 32330039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
    El-Esawi M; Glascoe A; Engle D; Ritz T; Link J; Ahmad M
    Plant Signal Behav; 2015; 10(9):e1063758. PubMed ID: 26313597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
    Damiani MJ; Yalloway GN; Lu J; McLeod NR; O'Neill MA
    Biochemistry; 2009 Dec; 48(48):11399-411. PubMed ID: 19888752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.
    Brautigam CA; Smith BS; Ma Z; Palnitkar M; Tomchick DR; Machius M; Deisenhofer J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12142-7. PubMed ID: 15299148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic field effects in Arabidopsis thaliana cryptochrome-1.
    Solov'yov IA; Chandler DE; Schulten K
    Biophys J; 2007 Apr; 92(8):2711-26. PubMed ID: 17259272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.
    Yamada D; Zhang Y; Iwata T; Hitomi K; Getzoff ED; Kandori H
    Biochemistry; 2012 Jul; 51(29):5774-83. PubMed ID: 22747528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.
    Huang Y; Baxter R; Smith BS; Partch CL; Colbert CL; Deisenhofer J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17701-6. PubMed ID: 17101984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vertebrate Cryptochromes are Vestigial Flavoproteins.
    Kutta RJ; Archipowa N; Johannissen LO; Jones AR; Scrutton NS
    Sci Rep; 2017 Mar; 7():44906. PubMed ID: 28317918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron transfer and spin dynamics of the radical-pair in the cryptochrome from Chlamydomonas reinhardtii by computational analysis.
    Hong G; Pachter R; Essen LO; Ritz T
    J Chem Phys; 2020 Feb; 152(6):065101. PubMed ID: 32061221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
    Bouly JP; Schleicher E; Dionisio-Sese M; Vandenbussche F; Van Der Straeten D; Bakrim N; Meier S; Batschauer A; Galland P; Bittl R; Ahmad M
    J Biol Chem; 2007 Mar; 282(13):9383-9391. PubMed ID: 17237227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interconnection of the Antenna Pigment 8-HDF and Flavin Facilitates Red-Light Reception in a Bifunctional Animal-like Cryptochrome.
    Oldemeyer S; Haddad AZ; Fleming GR
    Biochemistry; 2020 Feb; 59(4):594-604. PubMed ID: 31846308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.