These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38913544)

  • 41. Decrypting cryptochrome: revealing the molecular identity of the photoactivation reaction.
    Solov'yov IA; Domratcheva T; Moughal Shahi AR; Schulten K
    J Am Chem Soc; 2012 Oct; 134(43):18046-52. PubMed ID: 23009093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
    Kondoh M; Shiraishi C; Müller P; Ahmad M; Hitomi K; Getzoff ED; Terazima M
    J Mol Biol; 2011 Oct; 413(1):128-37. PubMed ID: 21875594
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Origin of light-induced spin-correlated radical pairs in cryptochrome.
    Weber S; Biskup T; Okafuji A; Marino AR; Berthold T; Link G; Hitomi K; Getzoff ED; Schleicher E; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14745-54. PubMed ID: 20684534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor.
    Maeda K; Robinson AJ; Henbest KB; Hogben HJ; Biskup T; Ahmad M; Schleicher E; Weber S; Timmel CR; Hore PJ
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4774-9. PubMed ID: 22421133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Arabidopsis cryptochrome 2 I404F mutant is hypersensitive and shows flavin reduction even in the absence of light.
    Araguirang GE; Niemann N; Kiontke S; Eckel M; Dionisio-Sese ML; Batschauer A
    Planta; 2019 Dec; 251(1):33. PubMed ID: 31832774
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Kottke T; Batschauer A; Ahmad M; Heberle J
    Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photocycle and signaling mechanisms of plant cryptochromes.
    Ahmad M
    Curr Opin Plant Biol; 2016 Oct; 33():108-115. PubMed ID: 27423124
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles.
    Kleine T; Lockhart P; Batschauer A
    Plant J; 2003 Jul; 35(1):93-103. PubMed ID: 12834405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic determination of the functional state in photolyase and the implication for cryptochrome.
    Liu Z; Zhang M; Guo X; Tan C; Li J; Wang L; Sancar A; Zhong D
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12972-7. PubMed ID: 23882072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome.
    Thöing C; Oldemeyer S; Kottke T
    J Am Chem Soc; 2015 May; 137(18):5990-9. PubMed ID: 25909499
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome.
    Lüdemann G; Solov'yov IA; Kubař T; Elstner M
    J Am Chem Soc; 2015 Jan; 137(3):1147-56. PubMed ID: 25535848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigation of the pH-dependence of the oxidation of FAD in VcCRY-1, a member of the cryptochrome-DASH family.
    Gindt YM; Connolly G; Vonder Haar AL; Kikhwa M; Schelvis JPM
    Photochem Photobiol Sci; 2021 Jun; 20(6):831-841. PubMed ID: 34091863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome.
    Xu L; Wen B; Shao W; Yao P; Zheng W; Zhou Z; Zhang Y; Zhu G
    Chembiochem; 2019 Apr; 20(7):940-948. PubMed ID: 30548754
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Deviers J; Cailliez F; Gutiérrez BZ; Kattnig DR; de la Lande A
    Phys Chem Chem Phys; 2022 Jul; 24(27):16784-16798. PubMed ID: 35775941
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.
    Müller P; Ahmad M
    J Biol Chem; 2011 Jun; 286(24):21033-40. PubMed ID: 21467031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alternative radical pairs for cryptochrome-based magnetoreception.
    Lee AA; Lau JC; Hogben HJ; Biskup T; Kattnig DR; Hore PJ
    J R Soc Interface; 2014 Jun; 11(95):20131063. PubMed ID: 24671932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Viability of superoxide-containing radical pairs as magnetoreceptors.
    Player TC; Hore PJ
    J Chem Phys; 2019 Dec; 151(22):225101. PubMed ID: 31837685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
    Kutta RJ; Archipowa N; Scrutton NS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome.
    Sjulstok E; Lüdemann G; Kubař T; Elstner M; Solov'yov IA
    Biophys J; 2018 Jun; 114(11):2563-2572. PubMed ID: 29874607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and evolutionary aspects of antenna chromophore usage by class II photolyases.
    Kiontke S; Gnau P; Haselsberger R; Batschauer A; Essen LO
    J Biol Chem; 2014 Jul; 289(28):19659-69. PubMed ID: 24849603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.