These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38913544)

  • 61. Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function.
    Masiero A; Aufiero S; Minervini G; Moro S; Costa R; Tosatto SC
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1606-11. PubMed ID: 25026553
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor.
    Hong G; Pachter R; Ritz T
    J Phys Chem B; 2018 Jun; 122(25):6503-6510. PubMed ID: 29847128
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1.
    Lin C; Robertson DE; Ahmad M; Raibekas AA; Jorns MS; Dutton PL; Cashmore AR
    Science; 1995 Aug; 269(5226):968-70. PubMed ID: 7638620
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flavin reduction activates Drosophila cryptochrome.
    Vaidya AT; Top D; Manahan CC; Tokuda JM; Zhang S; Pollack L; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20455-60. PubMed ID: 24297896
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rapid Oxidation Following Photoreduction in the Avian Cryptochrome4 Photocycle.
    Otsuka H; Mitsui H; Miura K; Okano K; Imamoto Y; Okano T
    Biochemistry; 2020 Sep; 59(38):3615-3625. PubMed ID: 32915550
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
    Berndt A; Kottke T; Breitkreuz H; Dvorsky R; Hennig S; Alexander M; Wolf E
    J Biol Chem; 2007 Apr; 282(17):13011-21. PubMed ID: 17298948
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Involvement of electron transfer in the photoreaction of zebrafish Cryptochrome-DASH.
    Zikihara K; Ishikawa T; Todo T; Tokutomi S
    Photochem Photobiol; 2008; 84(4):1016-23. PubMed ID: 18494763
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A structural view of plant CRY2 photoactivation and inactivation.
    Wang Q; Lin C
    Nat Struct Mol Biol; 2020 May; 27(5):401-403. PubMed ID: 32398828
    [TBL] [Abstract][Full Text] [Related]  

  • 69. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions.
    Balland V; Byrdin M; Eker AP; Ahmad M; Brettel K
    J Am Chem Soc; 2009 Jan; 131(2):426-7. PubMed ID: 19140781
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.
    Ozturk N; Selby CP; Zhong D; Sancar A
    J Biol Chem; 2014 Feb; 289(8):4634-42. PubMed ID: 24379403
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana.
    Pokorny R; Klar T; Essen LO; Batschauer A
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Oct; 61(Pt 10):935-8. PubMed ID: 16511200
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Magnetoreception through cryptochrome may involve superoxide.
    Solov'yov IA; Schulten K
    Biophys J; 2009 Jun; 96(12):4804-13. PubMed ID: 19527640
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A deazariboflavin chromophore kinetically stabilizes reduced FAD state in a bifunctional cryptochrome.
    Hosokawa Y; Morita H; Nakamura M; Yamamoto J
    Sci Rep; 2023 Oct; 13(1):16682. PubMed ID: 37794070
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
    Gao J; Wang X; Zhang M; Bian M; Deng W; Zuo Z; Yang Z; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9135-40. PubMed ID: 26106155
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.
    Brazard J; Usman A; Lacombat F; Ley C; Martin MM; Plaza P; Mony L; Heijde M; Zabulon G; Bowler C
    J Am Chem Soc; 2010 Apr; 132(13):4935-45. PubMed ID: 20222748
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.
    Ahmad M; Galland P; Ritz T; Wiltschko R; Wiltschko W
    Planta; 2007 Feb; 225(3):615-24. PubMed ID: 16955271
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lifetimes of Arabidopsis cryptochrome signaling states in vivo.
    Herbel V; Orth C; Wenzel R; Ahmad M; Bittl R; Batschauer A
    Plant J; 2013 May; 74(4):583-92. PubMed ID: 23398192
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sensitive fluorescence-based detection of magnetic field effects in photoreactions of flavins.
    Evans EW; Li J; Storey JG; Maeda K; Henbest KB; Dodson CA; Hore PJ; Mackenzie SR; Timmel CR
    Phys Chem Chem Phys; 2015 Jul; 17(28):18456-63. PubMed ID: 26108474
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spectroscopic and thermodynamic comparisons of Escherichia coli DNA photolyase and Vibrio cholerae cryptochrome 1.
    Sokolowsky K; Newton M; Lucero C; Wertheim B; Freedman J; Cortazar F; Czochor J; Schelvis JP; Gindt YM
    J Phys Chem B; 2010 May; 114(20):7121-30. PubMed ID: 20438097
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor.
    Partch CL; Clarkson MW; Ozgür S; Lee AL; Sancar A
    Biochemistry; 2005 Mar; 44(10):3795-805. PubMed ID: 15751956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.