These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38913623)

  • 1. Synergistic N/Mn Codoping Deagglomerate Carbon Coating of LiFePO
    Wang YW; Tang JJ; Liu J; Lv SZ; Hou JJ; Wu CD; Wang JH; Qiu J; Deng L; Zhao L; Wang ZB
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33723-33732. PubMed ID: 38913623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.
    Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the Rate Capability of LiFePO4 by a New Highly Graphitic Carbon-Coating Method.
    Song J; Sun B; Liu H; Ma Z; Chen Z; Shao G; Wang G
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15225-31. PubMed ID: 27238368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced cycling performance of nanostructure LiFePO
    Zhao C; Wang LN; Chen J; Gao M
    RSC Adv; 2018 Dec; 8(73):41850-41857. PubMed ID: 35558759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Electrochemical Performance of LiFePO
    Wang P; Zhang G; Li Z; Sheng W; Zhang Y; Gu J; Zheng X; Cao F
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26908-26915. PubMed ID: 27661261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability.
    Zhang Q; Huang SZ; Jin J; Liu J; Li Y; Wang HE; Chen LH; Wang BJ; Su BL
    Sci Rep; 2016 May; 6():25942. PubMed ID: 27181195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted hydrometallurgical extraction of Li
    Bonnisa Magdaline T; Vadivel Murugan A
    Dalton Trans; 2020 May; 49(19):6227-6241. PubMed ID: 32334428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Electrochemical Performance of LiFePO
    Yi D; Cui X; Li N; Zhang L; Yang D
    ACS Omega; 2020 May; 5(17):9752-9758. PubMed ID: 32391462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Pot Synthesis of LiFePO
    Zhang B; Wang S; Liu L; Li Y; Yang J
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engendering High Energy Density LiFePO
    Kubarkov AV; Babkin AV; Drozhzhin OA; Stevenson KJ; Antipov EV; Sergeyev VG
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double Carbon Nano Coating of LiFePO4 Cathode Material for High Performance of Lithium Ion Batteries.
    Ding YH; Huang GL; Li HH; Xie HM; Sun HZ; Zhang JP
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9630-5. PubMed ID: 26682389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4.
    Zhang K; Lee JT; Li P; Kang B; Kim JH; Yi GR; Park JH
    Nano Lett; 2015 Oct; 15(10):6756-63. PubMed ID: 26389552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Modification of the LiFePO
    Tron A; Jo YN; Oh SH; Park YD; Mun J
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12391-12399. PubMed ID: 28322545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage.
    Wang B; Liu A; Abdulla WA; Wang D; Zhao XS
    Nanoscale; 2015 May; 7(19):8819-28. PubMed ID: 25908535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic modulation of nickel selenide by copper doping and
    Shang J; Dong H; Geng H; Cao B; Liu H; Liu Q; Cao X; Zheng J; Gu H
    Nanoscale; 2020 Dec; 12(46):23645-23652. PubMed ID: 33216108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Performance of Li-S Batteries due to Synergistic Adsorption and Catalysis Activity within a Separation Coating Made of Hybridized BNNSs/N-Doping Porous Carbon Fibers.
    Yang J; Qiao W; Qiao J; Gao H; Li Z; Wang P; Cao C; Tang C; Xue Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48558-48569. PubMed ID: 36263683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of VO Nanorings on a Porous Carbon Architecture for High-Performance Li-Ion Batteries.
    Liu X; Li G; Wu J; Zhang D; Li L
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9454-9463. PubMed ID: 35142212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.
    Lee YC; Han DW; Park M; Jo MR; Kang SH; Lee JK; Kang YM
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9435-41. PubMed ID: 24786736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.