These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38913842)

  • 1. Excitation configuration analysis for divide-and-conquer excited-state calculation method using dynamical polarizability.
    Nishimura R; Yoshikawa T; Sakata K; Nakai H
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38913842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale excited-state calculation using dynamical polarizability evaluated by divide-and-conquer based coupled cluster linear response method.
    Yoshikawa T; Yoshihara J; Nakai H
    J Chem Phys; 2020 Jan; 152(2):024102. PubMed ID: 31941302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient pole-search algorithm for dynamic polarizability: Toward alternative excited-state calculation for large systems.
    Nakai H; Yoshikawa T; Nonaka Y
    J Comput Chem; 2017 Jan; 38(1):7-14. PubMed ID: 27706818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an excited-state calculation method for large systems using dynamical polarizability: A divide-and-conquer approach at the time-dependent density functional level.
    Nakai H; Yoshikawa T
    J Chem Phys; 2017 Mar; 146(12):124123. PubMed ID: 28388124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approach to excited-state calculations of large molecules based on divide-and-conquer method: application to photoactive yellow protein.
    Yoshikawa T; Kobayashi M; Fujii A; Nakai H
    J Phys Chem B; 2013 May; 117(18):5565-73. PubMed ID: 23627739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-averaged Monte Carlo configuration interaction applied to electronically excited states.
    Coe JP; Paterson MJ
    J Chem Phys; 2013 Oct; 139(15):154103. PubMed ID: 24160496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations.
    Nakai H; Kobayashi M; Yoshikawa T; Seino J; Ikabata Y; Nishimura Y
    J Phys Chem A; 2023 Jan; 127(3):589-618. PubMed ID: 36630608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic hyperpolarizability calculations of large systems: the linear-scaling divide-and-conquer approach.
    Kobayashi M; Touma T; Nakai H
    J Chem Phys; 2012 Feb; 136(8):084108. PubMed ID: 22380033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the calculation of general response properties in subsystem density functional theory.
    Neugebauer J
    J Chem Phys; 2009 Aug; 131(8):084104. PubMed ID: 19725605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effective energy gradient expression for divide-and-conquer second-order Møller-Plesset perturbation theory.
    Kobayashi M; Nakai H
    J Chem Phys; 2013 Jan; 138(4):044102. PubMed ID: 23387563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CC2 oscillator strengths within the local framework for calculating excitation energies (LoFEx).
    Baudin P; Kjærgaard T; Kristensen K
    J Chem Phys; 2017 Apr; 146(14):144107. PubMed ID: 28411600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoring the size consistency of multireference configuration interactions through class dressings: applications to ground and excited states.
    Ben Amor N; Maynau D; Malrieu JP; Monari A
    J Chem Phys; 2008 Aug; 129(6):064112. PubMed ID: 18715056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of excitation energies of open-shell molecules with spatially degenerate ground states. II. Transformed reference via intermediate configuration Kohn-Sham time dependent density functional theory oscillator strengths and magnetic circular dichroism C terms.
    Seth M; Ziegler T
    J Chem Phys; 2006 Apr; 124(14):144105. PubMed ID: 16626178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillator strengths and excited-state couplings for double excitations in time-dependent density functional theory.
    Dar DB; Maitra NT
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38038212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarks for Electronically Excited States with CASSCF Methods.
    Helmich-Paris B
    J Chem Theory Comput; 2019 Jul; 15(7):4170-4179. PubMed ID: 31136706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-State Polarizabilities: A Combined Density Functional Theory and Information-Theoretic Approach Study.
    Zhao D; He X; Ayers PW; Liu S
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules.
    Loos PF; Lipparini F; Boggio-Pasqua M; Scemama A; Jacquemin D
    J Chem Theory Comput; 2020 Mar; 16(3):1711-1741. PubMed ID: 31986042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple bonds and excited states from the Hartree-Fock-Heitler-London method.
    Corongiu G
    J Phys Chem A; 2007 Dec; 111(51):13611-22. PubMed ID: 18052259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local unitary transformation method toward practical electron correlation calculations with scalar relativistic effect in large-scale molecules.
    Seino J; Nakai H
    J Chem Phys; 2013 Jul; 139(3):034109. PubMed ID: 23883012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.