These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38914295)

  • 1. Sleep stages classification by fusing the time-related synchronization analysis and brain activations.
    Li C; Mu Y; Zhu P; Pan Y; Zhang S; Yang L; Xu P; Li F
    Brain Res Bull; 2024 Sep; 215():111017. PubMed ID: 38914295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.
    Lajnef T; Chaibi S; Ruby P; Aguera PE; Eichenlaub JB; Samet M; Kachouri A; Jerbi K
    J Neurosci Methods; 2015 Jul; 250():94-105. PubMed ID: 25629798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Modal Sleep Stage Classification With Two-Stream Encoder-Decoder.
    Zhang Z; Lin BS; Peng CW; Lin BS
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2096-2105. PubMed ID: 38848223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep stage classification using single-channel EOG.
    Rahman MM; Bhuiyan MIH; Hassan AR
    Comput Biol Med; 2018 Nov; 102():211-220. PubMed ID: 30170769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An effective hybrid feature selection using entropy weight method for automatic sleep staging.
    Wang W; Li J; Fang Y; Zheng Y; You F
    Physiol Meas; 2023 Oct; 44(10):. PubMed ID: 37783214
    [No Abstract]   [Full Text] [Related]  

  • 6. Machine learning-empowered sleep staging classification using multi-modality signals.
    Satapathy SK; Brahma B; Panda B; Barsocchi P; Bhoi AK
    BMC Med Inform Decis Mak; 2024 May; 24(1):119. PubMed ID: 38711099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplifying Multimodal With Single EOG Modality for Automatic Sleep Staging.
    Zhou Y; Zhao S; Wang J; Jiang H; Yu Z; Li S; Li T; Pan G
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1668-1678. PubMed ID: 38635384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds.
    Jiang D; Ma Y; Wang Y
    Comput Methods Programs Biomed; 2019 Sep; 178():19-30. PubMed ID: 31416548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hierarchical sequential neural network with feature fusion for sleep staging based on EOG and RR signals.
    Sun C; Chen C; Fan J; Li W; Zhang Y; Chen W
    J Neural Eng; 2019 Oct; 16(6):066020. PubMed ID: 31394522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.
    Shi J; Liu X; Li Y; Zhang Q; Li Y; Ying S
    J Neurosci Methods; 2015 Oct; 254():94-101. PubMed ID: 26192325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rule-based automatic sleep staging method.
    Liang SF; Kuo CE; Hu YH; Cheng YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6067-70. PubMed ID: 22255723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Itakura Distance as a valuable feature for computer-aided classification of sleep stages.
    Ebrahimi F; Mikaili M; Estrada E; Nazeran H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3300-3. PubMed ID: 18002701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Multi-modal physiological time-frequency feature extraction network for accurate sleep stage classification].
    Hu K; Chen J; Zhang P; Xue W; Xie J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):26-33. PubMed ID: 38403601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep staging classification based on a new parallel fusion method of multiple sources signals.
    Hei Y; Yuan T; Fan Z; Yang B; Hu J
    Physiol Meas; 2022 Apr; 43(4):. PubMed ID: 35381584
    [No Abstract]   [Full Text] [Related]  

  • 15. Optimizing sleep staging on multimodal time series: Leveraging borderline synthetic minority oversampling technique and supervised convolutional contrastive learning.
    Huang X; Schmelter F; Irshad MT; Piet A; Nisar MA; Sina C; Grzegorzek M
    Comput Biol Med; 2023 Nov; 166():107501. PubMed ID: 37742416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.
    Toma TI; Choi S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scoring accuracy of automated sleep staging from a bipolar electroocular recording compared to manual scoring by multiple raters.
    Stepnowsky C; Levendowski D; Popovic D; Ayappa I; Rapoport DM
    Sleep Med; 2013 Nov; 14(11):1199-207. PubMed ID: 24047533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-modal assessment of sleep stages using adaptive Fourier decomposition and machine learning.
    Fatimah B; Singhal A; Singh P
    Comput Biol Med; 2022 Sep; 148():105877. PubMed ID: 35853400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease.
    Christensen JA; Zoetmulder M; Koch H; Frandsen R; Arvastson L; Christensen SR; Jennum P; Sorensen HB
    J Neurosci Methods; 2014 Sep; 235():262-76. PubMed ID: 25088694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rule-based automatic sleep staging method.
    Liang SF; Kuo CE; Hu YH; Cheng YS
    J Neurosci Methods; 2012 Mar; 205(1):169-76. PubMed ID: 22245090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.