These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38914335)

  • 1. Unravelling arsenic bioavailability in floodplain soils impacted by mining activities.
    Urango-Cárdenas I; Enamorado-Montes G; Burgos-Nuñez S; Marrugo-Madrid S; Paternina-Uribe R; Marrugo-Negrete J; Díez S
    Sci Total Environ; 2024 Oct; 947():174193. PubMed ID: 38914335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction.
    Cruz-Hernández Y; Ruiz-García M; Villalobos M; Romero FM; Meza-Figueroa D; Garrido F; Hernández-Alvarez E; Pi-Puig T
    Environ Pollut; 2018 Jun; 237():154-165. PubMed ID: 29482021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils.
    Mikutta C; Mandaliev PN; Mahler N; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014 Nov; 48(22):13468-77. PubMed ID: 25358072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature.
    Simmler M; Bommer J; Frischknecht S; Christl I; Kotsev T; Kretzschmar R
    Environ Pollut; 2017 Dec; 231(Pt 1):722-731. PubMed ID: 28850940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia.
    Pinedo-Hernández J; Marrugo-Negrete J; Díez S
    Chemosphere; 2015 Jan; 119():1289-1295. PubMed ID: 25460774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system.
    Tighe M; Lockwood PV; Ashley PM; Murison RD; Wilson SC
    Sci Total Environ; 2013 Oct; 463-464():151-60. PubMed ID: 23792257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification and fractionation of mercury in soils from the Chatian mercury mining deposit, southwestern China.
    Li Y; Yang L; Ji Y; Sun H; Wang W
    Environ Geochem Health; 2009 Dec; 31(6):617-28. PubMed ID: 18855104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated carbon as a strong DOM adsorbent mitigates antimony and arsenic release in flooded mining-impacted soils.
    Zhang E; Wu S; Liu J; Li H; Liu X; Lu Y; Ge C; Zhou D
    J Hazard Mater; 2024 Jul; 473():134663. PubMed ID: 38788575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental risk associated with accumulation of toxic metalloids in soils of the Odra River floodplain-case study of the assessment based on total concentrations, fractionation and geochemical indices.
    Kawałko D; Karczewska A; Lewińska K
    Environ Geochem Health; 2023 Jul; 45(7):4461-4476. PubMed ID: 36820947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management.
    Shaheen SM; Frohne T; White JR; DeLaune RD; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):131-140. PubMed ID: 27240716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: mine tailings in an African tropical environment-mechanisms for the bioavailability of heavy metals in soils.
    Kaninga BK; Chishala BH; Maseka KK; Sakala GM; Lark MR; Tye A; Watts MJ
    Environ Geochem Health; 2020 Apr; 42(4):1069-1094. PubMed ID: 31134395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pollution characteristics and environmental availability of toxic elements in soil from an abandoned arsenic-containing mine.
    Ran H; Deng X; Guo Z; Hu Z; An Y; Xiao X; Yi L; Xu R
    Chemosphere; 2022 Sep; 303(Pt 3):135189. PubMed ID: 35660392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of mercury with aluminum, iron and manganese oxy-hydroxides in sediments from the Alto Pantanal, Brazil.
    Hylander LD; Meili M; Oliveira LJ; de Castro e Silva E; Guimarães JR; Araujo DM; Neves RP; Stachiw R; Barros AJ; Silva GD
    Sci Total Environ; 2000 Oct; 260(1-3):97-107. PubMed ID: 11032119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany.
    Antoniadis V; Shaheen SM; Boersch J; Frohne T; Du Laing G; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):192-200. PubMed ID: 27117508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation.
    Sukitprapanon T; Suddhiprakarn A; Kheoruenromne I; Gilkes RJ
    Chemosphere; 2018 Apr; 197():691-702. PubMed ID: 29407833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total mercury, chromium, nickel and other trace chemical element contents in soils at an old cinnabar mine site (Merník, Slovakia): anthropogenic versus natural sources of soil contamination.
    Kulikova T; Hiller E; Jurkovič Ľ; Filová L; Šottník P; Lacina P
    Environ Monit Assess; 2019 Apr; 191(5):263. PubMed ID: 30953219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemistry of mercury in tropical swamps impacted by gold mining.
    Marrugo-Negrete J; Pinedo-Hernández J; Díez S
    Chemosphere; 2015 Sep; 134():44-51. PubMed ID: 25911046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation.
    de Mello JW; Talbott JL; Scott J; Roy WR; Stucki JW
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):388-96. PubMed ID: 17993222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.