These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38914411)

  • 21. Machine learning models predict triage levels, massive transfusion protocol activation, and mortality in trauma utilizing patients hemodynamics on admission.
    El-Menyar A; Naduvilekandy M; Asim M; Rizoli S; Al-Thani H
    Comput Biol Med; 2024 Sep; 179():108880. PubMed ID: 39018880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a machine learning approach for prediction of red blood cell transfusion in patients undergoing Cesarean section at a single institution.
    Lee SW; Park B; Seo J; Lee S; Sim JH
    Sci Rep; 2024 Jul; 14(1):16628. PubMed ID: 39025903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning-based prediction of massive perioperative allogeneic blood transfusion in cardiac surgery.
    Tschoellitsch T; Böck C; Mahečić TT; Hofmann A; Meier J
    Eur J Anaesthesiol; 2022 Sep; 39(9):766-773. PubMed ID: 35852544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm.
    Jo C; Ko S; Shin WC; Han HS; Lee MC; Ko T; Ro DH
    Knee Surg Sports Traumatol Arthrosc; 2020 Jun; 28(6):1757-1764. PubMed ID: 31254027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fibrinogen level on admission is a predictor for massive transfusion in patients with severe blunt trauma: Analyses of a retrospective multicentre observational study.
    Nakamura Y; Ishikura H; Kushimoto S; Kiyomi F; Kato H; Sasaki J; Ogura H; Matsuoka T; Uejima T; Morimura N; Hayakawa M; Hagiwara A; Takeda M; Kaneko N; Saitoh D; Kudo D; Maekawa K; Kanemura T; Shibusawa T; Hagihara Y; Furugori S; Shiraishi A; Murata K; Mayama G; Yaguchi A; Kim S; Takasu O; Nishiyama K
    Injury; 2017 Mar; 48(3):674-679. PubMed ID: 28122682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse shock index multiplied by Glasgow coma scale as a predictor of massive transfusion in trauma.
    Lee YT; Bae BK; Cho YM; Park SC; Jeon CH; Huh U; Lee DS; Ko SH; Ryu DM; Wang IJ
    Am J Emerg Med; 2021 Aug; 46():404-409. PubMed ID: 33143960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography.
    Kwon JM; Kim KH; Jeon KH; Lee SY; Park J; Oh BH
    Scand J Trauma Resusc Emerg Med; 2020 Oct; 28(1):98. PubMed ID: 33023615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a field artificial intelligence triage tool: Confidence in the prediction of shock, transfusion, and definitive surgical therapy in patients with truncal gunshot wounds.
    Nederpelt CJ; Mokhtari AK; Alser O; Tsiligkaridis T; Roberts J; Cha M; Fawley JA; Parks JJ; Mendoza AE; Fagenholz PJ; Kaafarani HMA; King DR; Velmahos GC; Saillant N
    J Trauma Acute Care Surg; 2021 Jun; 90(6):1054-1060. PubMed ID: 34016929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.
    Chen X; Pan J; Li Y; Tang R
    Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning in the prediction of massive transfusion in trauma: a retrospective analysis as a proof-of-concept.
    Nikouline A; Feng J; Rudzicz F; Nathens A; Nolan B
    Eur J Trauma Emerg Surg; 2024 Jun; 50(3):1073-1081. PubMed ID: 38265444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of machine learning classifiers for predicting intraoperative blood transfusion in non-cardiac surgery.
    Park I; Park JH; Yoon J; Koo CH; Oh AY; Kim JH; Ryu JH
    Transfus Clin Biol; 2024 Oct; ():. PubMed ID: 39426585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Descriptive characteristics and in-hospital mortality of critically bleeding patients requiring massive transfusion: results from the Australian and New Zealand Massive Transfusion Registry.
    Ruseckaite R; McQuilten ZK; Oldroyd JC; Richter TH; Cameron PA; Isbister JP; Wood EM
    Vox Sang; 2017 Apr; 112(3):240-248. PubMed ID: 28181262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of massive and emergency transfusion prediction scoring systems after trauma with a new Bleeding Risk Index score applied in-flight.
    Yang S; Mackenzie CF; Rock P; Lin C; Floccare D; Scalea T; Stumpf F; Winans C; Galvagno S; Miller C; Stein D; Hu PF
    J Trauma Acute Care Surg; 2021 Feb; 90(2):268-273. PubMed ID: 33502145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prehospital end-tidal carbon dioxide is predictive of death and massive transfusion in injured patients: An Eastern Association for Surgery of Trauma multicenter trial.
    Campion EM; Cralley A; Sauaia A; Buchheit RC; Brown AT; Spalding MC; LaRiccia A; Moore S; Tann K; Leskovan J; Camazine M; Barnes SL; Otaibi B; Hazelton JP; Jacobson LE; Williams J; Castillo R; Stewart NJ; Elterman JB; Zier L; Goodman M; Elson N; Miner J; Hardman C; Kapoen C; Mendoza AE; Schellenberg M; Benjamin E; Wakam GK; Alam HB; Kornblith LZ; Callcut RA; Coleman LE; Shatz DV; Burruss S; Linn AC; Perea L; Morgan M; Schroeppel TJ; Stillman Z; Carrick MM; Gomez MF; Berne JD; McIntyre RC; Urban S; Nahmias J; Tay E; Cohen M; Moore EE; McVaney K; Burlew CC
    J Trauma Acute Care Surg; 2022 Feb; 92(2):355-361. PubMed ID: 34686640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a machine learning model to predict intraoperative transfusion and guide type and screen ordering.
    Zapf MAC; Fabbri DV; Andrews J; Li G; Freundlich RE; Al-Droubi S; Wanderer JP
    J Clin Anesth; 2023 Dec; 91():111272. PubMed ID: 37774648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: Potential role in personalized forecasting and decision support.
    Dreizin D; Zhou Y; Chen T; Li G; Yuille AL; McLenithan A; Morrison JJ
    J Trauma Acute Care Surg; 2020 Mar; 88(3):425-433. PubMed ID: 32107356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multicenter validation of a simplified score to predict massive transfusion in trauma.
    Cotton BA; Dossett LA; Haut ER; Shafi S; Nunez TC; Au BK; Zaydfudim V; Johnston M; Arbogast P; Young PP
    J Trauma; 2010 Jul; 69 Suppl 1():S33-9. PubMed ID: 20622617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and Validation of a Machine Learning Algorithm to Predict the Risk of Blood Transfusion after Total Hip Replacement in Patients with Femoral Neck Fractures: A Multicenter Retrospective Cohort Study.
    Zhu J; Xu C; Jiang Y; Zhu J; Tu M; Yan X; Shen Z; Lou Z
    Orthop Surg; 2024 Aug; 16(8):2066-2080. PubMed ID: 38951965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FIBTEM provides early prediction of massive transfusion in trauma.
    Schöchl H; Cotton B; Inaba K; Nienaber U; Fischer H; Voelckel W; Solomon C
    Crit Care; 2011; 15(6):R265. PubMed ID: 22078266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study.
    Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H
    JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.