These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 3891449)

  • 1. Differential sensitivity of chicken MM-creatine kinase to trypsin and proteinase-K.
    Lough J; Wrenn DS; Miziorko HM; Auer HE
    Int J Biochem; 1985; 17(3):309-18. PubMed ID: 3891449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific proteolytic modification of creatine kinase isoenzymes. Implication of C-terminal involvement in enzymic activity but not in subunit-subunit recognition.
    Lebherz HG; Burke T; Shackelford JE; Strickler JE; Wilson KJ
    Biochem J; 1986 Jan; 233(1):51-6. PubMed ID: 3006663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease digestion studies of an equilibrium intermediate in the unfolding of creatine kinase.
    Webb T; Jackson PJ; Morris GE
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):83-8. PubMed ID: 9003404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates.
    Wyss M; James P; Schlegel J; Wallimann T
    Biochemistry; 1993 Oct; 32(40):10727-35. PubMed ID: 8399219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP nucleotidylation of creatine kinase.
    David SS; Haley BE
    Biochemistry; 1999 Jun; 38(26):8492-500. PubMed ID: 10387096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoclonal antibody studies of creatine kinase. The ART epitope: evidence for an intermediate in protein folding.
    Morris GE
    Biochem J; 1989 Jan; 257(2):461-9. PubMed ID: 2467657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADP-binding and ATP-binding sites in native and proteinase-K-digested creatine kinase, probed by reaction-induced difference infrared spectroscopy.
    Raimbault C; Clottes E; Leydier C; Vial C; Buchet R
    Eur J Biochem; 1997 Aug; 247(3):1197-208. PubMed ID: 9288948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Chymotrypsin-like' activity of chicken liver multicatalytic proteinase resides in the smallest subunit.
    Sato S; Shiratsuchi A
    Biochim Biophys Acta; 1990 Dec; 1041(3):269-72. PubMed ID: 2268674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of creatine kinase isoenzymes in myofibrils. II. Chicken heart muscle.
    Wallimann T; Kuhn HJ; Pelloni G; Turner DC; Eppenberger HM
    J Cell Biol; 1977 Nov; 75(2 Pt 1):318-25. PubMed ID: 264113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of trypsin to confirm the presence of macrocreatine kinase on isoenzyme electrophoresis.
    George R; Wallage M; Goodall R
    Ann Clin Biochem; 2012 Jul; 49(Pt 4):359-62. PubMed ID: 22568975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells.
    Wallimann T; Wegmann G; Moser H; Huber R; Eppenberger HM
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3816-9. PubMed ID: 3520556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A drug-responsive and protease-resistant peripheral NADH oxidase complex from the surface of HeLa S cells.
    del Castillo-Olivares A; Yantiri F; Chueh PJ; Wang S; Sweeting M; Sedlak D; Morré DM; Burgess J; Morré DJ
    Arch Biochem Biophys; 1998 Oct; 358(1):125-40. PubMed ID: 9750173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the stability of creatine kinase isozymes.
    Guo Z; Wang Z; Wang X
    Biochem Cell Biol; 2003 Feb; 81(1):9-16. PubMed ID: 12683631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of myofibrillar proteins by trypsin-like serine proteinases.
    Kay J; Siemankowski LM; Siemankowski RF; Greweling JA; Goll DE
    Biochem J; 1982 Feb; 201(2):279-85. PubMed ID: 7044373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance of a hemorrhagic proteinase from timber rattlesnake venom to proteolytic degradation.
    Civello DJ; Allen HR; Lee TT; Geren CR
    Toxicon; 1984; 22(2):235-41. PubMed ID: 6374969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of a fibrinogen-clotting enzyme from the venom of jararacuçu (Bothrops jararacussu).
    Zaganelli GL; Zaganelli MG; Magalhães A; Diniz CR; de Lima ME
    Toxicon; 1996 Jul; 34(7):807-19. PubMed ID: 8843581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A crosslinked tetrameric alpha 2M that binds but incompletely entraps trypsin.
    Khan FH; Mirza M; Saleemuddin M
    Biochem Mol Biol Int; 1994 Sep; 34(2):337-44. PubMed ID: 7531536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid purification of creatine kinase MB isoenzyme on preparative polyacrylamide slabs.
    Geng JG; Chen HZ; Yang YF; Qian ZH; Zhong LM
    Clin Chem; 1989 Jan; 35(1):98-101. PubMed ID: 2491977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of prostaglandin H synthase isoform structures using limited proteolytic digestion.
    Guo Q; Chang S; Diekman L; Xiao G; Kulmacz RJ
    Arch Biochem Biophys; 1997 Aug; 344(1):150-8. PubMed ID: 9244392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.