These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38914515)
21. Imparting CO Wang YR; Ding HM; Ma XY; Liu M; Yang YL; Chen Y; Li SL; Lan YQ Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202114648. PubMed ID: 34806265 [TBL] [Abstract][Full Text] [Related]
22. A nickel porphyrin-based covalent organic framework modified electrode for the electrochemical detection of acetaminophen. Hou L; Jiang Y; Chen LZ; Zhang SF; Li HY; Wei MJ; Kong FY; Wang W Anal Methods; 2024 Nov; 16(45):7789-7794. PubMed ID: 39417248 [TBL] [Abstract][Full Text] [Related]
23. Modulating the Density of Catalytic Sites in Multiple-Component Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Liu M; Zhao X; Yang S; Yang X; Li X; He J; Chen GZ; Xu Q; Zeng G ACS Appl Mater Interfaces; 2023 Sep; 15(37):44384-44393. PubMed ID: 37672678 [TBL] [Abstract][Full Text] [Related]
24. Metallated Isoindigo-Porphyrin Covalent Organic Framework Photocatalyst with a Narrow Band Gap for Efficient CO Skorjanc T; Shetty D; Mahmoud ME; Gándara F; Martinez JI; Mohammed AK; Boutros S; Merhi A; Shehayeb EO; Sharabati CA; Damacet P; Raya J; Gardonio S; Hmadeh M; Kaafarani BR; Trabolsi A ACS Appl Mater Interfaces; 2022 Jan; 14(1):2015-2022. PubMed ID: 34931799 [TBL] [Abstract][Full Text] [Related]
25. Two-Dimensional Porphyrin-Based Covalent Organic Framework with Enlarged Inter-layer Spacing for Tunable Photocatalytic CO Wang X; Ding X; Wang T; Wang K; Jin Y; Han Y; Zhang P; Li N; Wang H; Jiang J ACS Appl Mater Interfaces; 2022 Sep; 14(36):41122-41130. PubMed ID: 36044780 [TBL] [Abstract][Full Text] [Related]
26. Zn (II) Porphyrin Built-in D-A Covalent Organic Framework for Efficient Photocatalytic H Lv M; Ren X; Cao R; Chang Z; Chang X; Bai F; Li Y Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433020 [TBL] [Abstract][Full Text] [Related]
27. Boosting CO Gong YN; Mei JH; Shi WJ; Liu JW; Zhong DC; Lu TB Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318735. PubMed ID: 38108581 [TBL] [Abstract][Full Text] [Related]
28. Boosting Electroreduction of CO Wu QJ; Si DH; Wu Q; Dong YL; Cao R; Huang YB Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215687. PubMed ID: 36424351 [TBL] [Abstract][Full Text] [Related]
29. Quantitative Construction of Boronic-Ester Linkages in Covalent Organic Frameworks for the Carbon Dioxide Reduction. Yang X; Li X; Liu M; Yang S; Xu Q; Zeng G Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202317785. PubMed ID: 38085127 [TBL] [Abstract][Full Text] [Related]
30. Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Diercks CS; Lin S; Kornienko N; Kapustin EA; Nichols EM; Zhu C; Zhao Y; Chang CJ; Yaghi OM J Am Chem Soc; 2018 Jan; 140(3):1116-1122. PubMed ID: 29284263 [TBL] [Abstract][Full Text] [Related]
31. Construction of Catalytic Covalent Organic Frameworks with Redox-Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction. Liu M; Liu S; Cui CX; Miao Q; He Y; Li X; Xu Q; Zeng G Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202213522. PubMed ID: 36240790 [TBL] [Abstract][Full Text] [Related]
32. Dual Metallosalen-Based Covalent Organic Frameworks for Artificial Photosynthetic Diluted CO Dong H; Fang L; Chen KX; Wei JX; Li JX; Qiao X; Wang Y; Zhang FM; Lan YQ Angew Chem Int Ed Engl; 2024 Oct; ():e202414287. PubMed ID: 39373554 [TBL] [Abstract][Full Text] [Related]
33. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Liang Z; Wang HY; Zheng H; Zhang W; Cao R Chem Soc Rev; 2021 Mar; 50(4):2540-2581. PubMed ID: 33475099 [TBL] [Abstract][Full Text] [Related]
34. Computational Selection of High-Performing Covalent Organic Frameworks for Adsorption and Membrane-Based CO Aksu GO; Daglar H; Altintas C; Keskin S J Phys Chem C Nanomater Interfaces; 2020 Oct; 124(41):22577-22590. PubMed ID: 33133330 [TBL] [Abstract][Full Text] [Related]
35. Improved Photoreduction of CO Wang LJ; Wang RL; Zhang X; Mu JL; Zhou ZY; Su ZM ChemSusChem; 2020 Jun; 13(11):2973-2980. PubMed ID: 32017427 [TBL] [Abstract][Full Text] [Related]
36. Catalytic Linkage Engineering of Covalent Organic Frameworks for the Oxygen Reduction Reaction. Li X; Yang S; Liu M; Yang X; Xu Q; Zeng G; Jiang Z Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202304356. PubMed ID: 37116053 [TBL] [Abstract][Full Text] [Related]
37. Structural Regulation of Coupled Phthalocyanine-Porphyrin Covalent Organic Frameworks to Highly Active and Selective Electrocatalytic CO Yuan J; Chen S; Zhang Y; Li R; Zhang J; Peng T Adv Mater; 2022 Jul; 34(30):e2203139. PubMed ID: 35654012 [TBL] [Abstract][Full Text] [Related]
38. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO₂ reduction in water. Lin S; Diercks CS; Zhang YB; Kornienko N; Nichols EM; Zhao Y; Paris AR; Kim D; Yang P; Yaghi OM; Chang CJ Science; 2015 Sep; 349(6253):1208-13. PubMed ID: 26292706 [TBL] [Abstract][Full Text] [Related]
39. The bio-inspired heterogeneous single-cluster catalyst Ni100-Fe Xu H; Guan D; Ma L Nanoscale; 2023 Feb; 15(6):2756-2766. PubMed ID: 36656066 [TBL] [Abstract][Full Text] [Related]
40. Linker Engineering of 2D Imine Covalent Organic Frameworks for the Heterogeneous Palladium-Catalyzed Suzuki Coupling Reaction. Krishnaraj C; Jena HS; Rawat KS; Schmidt J; Leus K; Van Speybroeck V; Van Der Voort P ACS Appl Mater Interfaces; 2022 Nov; 14(45):50923-50931. PubMed ID: 36342965 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]