These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38914540)

  • 1. Creation of a biological sensorimotor interface for bionic reconstruction.
    Festin C; Ortmayr J; Maierhofer U; Tereshenko V; Blumer R; Schmoll M; Carrero-Rojas G; Luft M; Laengle G; Farina D; Bergmeister KD; Aszmann OC
    Nat Commun; 2024 Jun; 15(1):5337. PubMed ID: 38914540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proprioception: A New Era Set in Motion by Emerging Genetic and Bionic Strategies?
    Marasco PD; de Nooij JC
    Annu Rev Physiol; 2023 Feb; 85():1-24. PubMed ID: 36400128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Role for Sensory end Organ-Derived Signals in Regulating Muscle Spindle Proprioceptor Phenotype.
    Wu D; Schieren I; Qian Y; Zhang C; Jessell TM; de Nooij JC
    J Neurosci; 2019 May; 39(22):4252-4267. PubMed ID: 30926747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A murine model of a novel surgical architecture for proprioceptive muscle feedback and its potential application to control of advanced limb prostheses.
    Clites TR; Carty MJ; Srinivasan S; Zorzos AN; Herr HM
    J Neural Eng; 2017 Jun; 14(3):036002. PubMed ID: 28211795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury.
    Adidharma W; Khouri AN; Lee JC; Vanderboll K; Kung TA; Cederna PS; Kemp SWP
    Muscle Nerve; 2022 Oct; 66(4):384-396. PubMed ID: 35779064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole-Mount Muscle Approach.
    Sonner MJ; Walters MC; Ladle DR
    PLoS One; 2017; 12(1):e0170751. PubMed ID: 28122055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological and bionic hands: natural neural coding and artificial perception.
    Bensmaia SJ
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140209. PubMed ID: 26240424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory control of normal movement and of movement aided by neural prostheses.
    Prochazka A
    J Anat; 2015 Aug; 227(2):167-77. PubMed ID: 26047134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding sensory feedback from firing rates of afferent ensembles recorded in cat dorsal root ganglia in normal locomotion.
    Weber DJ; Stein RB; Everaert DG; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):240-3. PubMed ID: 16792303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic approaches to bionic touch through a peripheral nerve interface.
    Saal HP; Bensmaia SJ
    Neuropsychologia; 2015 Dec; 79(Pt B):344-53. PubMed ID: 26092769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force control in the absence of visual and tactile feedback.
    Mugge W; Abbink DA; Schouten AC; van der Helm FC; Arendzen JH; Meskers CG
    Exp Brain Res; 2013 Feb; 224(4):635-45. PubMed ID: 23223780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.
    Kistemaker DA; Van Soest AJ; Wong JD; Kurtzer I; Gribble PL
    J Neurophysiol; 2013 Feb; 109(4):1126-39. PubMed ID: 23100138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral target reinnervation following orthotopic grafting of fetal allogeneic and xenogeneic dorsal root ganglia.
    Rosario CM; Dubovy P; Sidman RL; Aldskogius H
    Exp Neurol; 1995 Apr; 132(2):251-61. PubMed ID: 7789463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of spinal manipulation duration on low threshold mechanoreceptors in lumbar paraspinal muscles: a preliminary report.
    Sung PS; Kang YM; Pickar JG
    Spine (Phila Pa 1976); 2005 Jan; 30(1):115-22. PubMed ID: 15626991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Painful and non-painful pressure sensations from human skeletal muscle.
    Graven-Nielsen T; Mense S; Arendt-Nielsen L
    Exp Brain Res; 2004 Dec; 159(3):273-83. PubMed ID: 15480607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic encoding model for restoring touch in bionic hands through a nerve interface.
    Okorokova EV; He Q; Bensmaia SJ
    J Neural Eng; 2018 Dec; 15(6):066033. PubMed ID: 30245482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force.
    Proske U; Gandevia SC
    Physiol Rev; 2012 Oct; 92(4):1651-97. PubMed ID: 23073629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The making of a proprioceptor: a tale of two identities.
    de Nooij JC; Zampieri N
    Trends Neurosci; 2023 Dec; 46(12):1083-1094. PubMed ID: 37858440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological characteristics of low-threshold mechanoreceptors in joints, muscle and skin in human subjects.
    Macefield VG
    Clin Exp Pharmacol Physiol; 2005; 32(1-2):135-44. PubMed ID: 15730450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.
    Mildren RL; Bent LR
    J Appl Physiol (1985); 2016 Apr; 120(8):855-64. PubMed ID: 26823342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.