These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38914997)

  • 21. Identification of hub biomarkers of myocardial infarction by single-cell sequencing, bioinformatics, and machine learning.
    Zhang Q; Guo Y; Zhang B; Liu H; Peng Y; Wang D; Zhang D
    Front Cardiovasc Med; 2022; 9():939972. PubMed ID: 35958412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA sequencing and bioinformatics analysis of differentially expressed genes in the peripheral serum of ankylosing spondylitis patients.
    Bie Y; Zheng X; Chen X; Liu X; Wang L; Sun Y; Kou J
    J Orthop Surg Res; 2023 May; 18(1):394. PubMed ID: 37254181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA Sequencing for Gene Expression Profiles in Peripheral Blood Mononuclear Cells with Ankylosing Spondylitis RNA.
    Huang D; Liu J; Cao Y; Wan L; Jiang H; Sun Y; Wen J
    Biomed Res Int; 2020; 2020():5304578. PubMed ID: 32596323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Biomarker
    Xiao B; Cui PL; Li HC; Wang C; Zhang YZ; Wu ZM; Wu CA
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):343. PubMed ID: 38179754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening of key immune
    Huang Y; Wang A; Wang F; Xu Y; Zhang W; Shi F; Wang S
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Feb; 49(2):207-219. PubMed ID: 38755717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of key immune genes of osteoporosis based on bioinformatics and machine learning.
    Hao S; Xinqi M; Weicheng X; Shiwei Y; Lumin C; Xiao W; Dong L; Jun H
    Front Endocrinol (Lausanne); 2023; 14():1118886. PubMed ID: 37361541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis.
    Kenna TJ; Davidson SI; Duan R; Bradbury LA; McFarlane J; Smith M; Weedon H; Street S; Thomas R; Thomas GP; Brown MA
    Arthritis Rheum; 2012 May; 64(5):1420-9. PubMed ID: 22144400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of necroptosis-related genes in ankylosing spondylitis by bioinformatics and experimental validation.
    Wen P; Zhao Y; Yang M; Yang P; Nan K; Liu L; Xu P
    J Cell Mol Med; 2024 Jul; 28(14):e18557. PubMed ID: 39031474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploration of the pathogenesis of Sjögren's syndrome via DNA methylation and transcriptome analyses.
    Du Y; Li J; Wu J; Zeng F; He C
    Clin Rheumatol; 2022 Sep; 41(9):2765-2777. PubMed ID: 35562622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining bioinformatics and machine learning algorithms to identify and analyze shared biomarkers and pathways in COVID-19 convalescence and diabetes mellitus.
    Shen J; Wang Y; Deng X; Sana SRGL
    Front Endocrinol (Lausanne); 2023; 14():1306325. PubMed ID: 38169604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer.
    Yang C; Gong A
    Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215
    [No Abstract]   [Full Text] [Related]  

  • 32. Immune mechanism of low bone mineral density caused by ankylosing spondylitis based on bioinformatics and machine learning.
    Zhang D; Liu J; Gao B; Zong Y; Guan X; Zhang F; Shen Z; Lv S; Guo L; Yin F
    Front Genet; 2022; 13():1054035. PubMed ID: 36468006
    [No Abstract]   [Full Text] [Related]  

  • 33. Low expression of TCP1 (T-Complex 1) and PSMC1 (Proteasome 26S subunit, ATPase 1) in heterotopic ossification during ankylosing spondylitis.
    Zhong XL; Qian BP; Huang JC; Zhao SZ; Li Y; Qiu Y
    Bioengineered; 2021 Dec; 12(1):7459-7469. PubMed ID: 34612770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Phosphoproteomic analysis of peripheral blood mononuclear cells of ankylosing spondylitis patients].
    Luo F; Jiang N; Wang H; Shao X; Chen R; Bai R; Wang Y
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2020 May; 36(5):444-450. PubMed ID: 32696757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Screening of key biomarkers of tendinopathy based on bioinformatics and machine learning algorithms.
    Zhu YX; Huang JQ; Ming YY; Zhuang Z; Xia H
    PLoS One; 2021; 16(10):e0259475. PubMed ID: 34714891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of potential target genes for ankylosing spondylitis treatment.
    Ni Y; Jiang C
    Medicine (Baltimore); 2018 Feb; 97(8):e9760. PubMed ID: 29465556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the potential ankylosing spondylitis-related genes utilizing bioinformatics approaches.
    Zhao H; Wang D; Fu D; Xue L
    Rheumatol Int; 2015 Jun; 35(6):973-9. PubMed ID: 25432079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of key miRNAs and their targets in peripheral blood mononuclear cells of IgA nephropathy using bioinformatics analysis.
    Liu L; Yang Y; Yu D
    Medicine (Baltimore); 2021 Jul; 100(26):e26495. PubMed ID: 34190177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blood transcriptome analysis revealed the crosstalk between COVID-19 and HIV.
    Yan C; Niu Y; Wang X
    Front Immunol; 2022; 13():1008653. PubMed ID: 36389792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.