These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38915274)

  • 1. An integrative temperature-controlled microfluidic system for budding yeast heat shock response analysis at the single-cell level.
    Hong J; He H; Xu Y; Wang S; Luo C
    Lab Chip; 2024 Jul; 24(15):3658-3667. PubMed ID: 38915274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multilayer microfluidic system for studies of the dynamic responses of cellular proteins to oxygen switches at the single-cell level.
    Fu W; Wang S; Ouyang Q; Luo C
    Integr Biol (Camb); 2024 Jan; 16():. PubMed ID: 38900168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress.
    Mühlhofer M; Offensperger F; Reschke S; Wallmann G; Csaba G; Berchtold E; Riedl M; Blum H; Haslbeck M; Zimmer R; Buchner J
    FEBS Lett; 2024 Mar; 598(6):635-657. PubMed ID: 38366111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps.
    Xu X; Zhu Z; Wang Y; Geng Y; Xu F; Marchisio MA; Wang Z; Pan D
    Anal Bioanal Chem; 2021 Mar; 413(8):2181-2193. PubMed ID: 33517467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.
    Nussbaum I; Weindling E; Jubran R; Cohen A; Bar-Nun S
    PLoS One; 2014; 9(10):e111505. PubMed ID: 25356557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic coalescence of yeast Heat Shock Protein genes bypasses the requirement for actin.
    Rubio LS; Gross DS
    Genetics; 2023 Apr; 223(4):. PubMed ID: 36659814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.
    Bisaria A; Hersen P; McClean MN
    Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel two-layer-integrated microfluidic device for high-throughput yeast proteomic dynamics analysis at the single-cell level.
    Chen K; Rong N; Wang S; Luo C
    Integr Biol (Camb); 2020 Oct; 12(10):241-249. PubMed ID: 32995887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rpd3L HDAC complex is essential for the heat stress response in yeast.
    Ruiz-Roig C; Viéitez C; Posas F; de Nadal E
    Mol Microbiol; 2010 May; 76(4):1049-62. PubMed ID: 20398213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput microfluidics to control and measure signaling dynamics in single yeast cells.
    Hansen AS; Hao N; O'Shea EK
    Nat Protoc; 2015 Aug; 10(8):1181-97. PubMed ID: 26158443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity.
    Truman AW; Millson SH; Nuttall JM; Mollapour M; Prodromou C; Piper PW
    Eukaryot Cell; 2007 Apr; 6(4):744-52. PubMed ID: 17293484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors.
    Li S; Giardina DM; Siegal ML
    PLoS Genet; 2018 Nov; 14(11):e1007744. PubMed ID: 30388117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
    Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS
    Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
    Peffer S; Gonçalves D; Morano KA
    J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic inactivation of essential
    Ciccarelli M; Masser AE; Kaimal JM; Planells J; Andréasson C
    Mol Biol Cell; 2023 Sep; 34(10):ar101. PubMed ID: 37467033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae.
    Yamamoto N; Maeda Y; Ikeda A; Sakurai H
    Eukaryot Cell; 2008 May; 7(5):783-90. PubMed ID: 18359875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation and quantitative single-cell analysis of Saccharomyces cerevisiae on a multifunctional microfluidic device.
    Stratz S; Verboket PE; Hasler K; Dittrich PS
    Electrophoresis; 2018 Feb; 39(3):540-547. PubMed ID: 28880404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip cell immobilization and monitoring system using thermosensitive gel controlled by suspended polymeric microbridge.
    Yamanishi Y; Teramoto J; Magariyama Y; Ishihama A; Fukuda T; Arai F
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):312-7. PubMed ID: 19884104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.