These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38915602)

  • 1. Wavelet transform of single-trial vestibular short-latency evoked potential reveals temporary reduction in signal detectability and temporal precision following noise exposure.
    Niwa M; Bauer D; Anderson M; Kanicki A; Altschuler RA; Stewart CE; King WM
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intense noise exposure alters peripheral vestibular structures and physiology.
    Stewart CE; Bauer DS; Kanicki AC; Altschuler RA; King WM
    J Neurophysiol; 2020 Feb; 123(2):658-669. PubMed ID: 31875485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient peripheral vestibular hypofunction measured with vestibular short-latency evoked potentials following noise exposure in rats.
    Stewart CE; Bauer DS; Altschuler RA; King WM
    J Neurophysiol; 2021 Nov; 126(5):1547-1554. PubMed ID: 34550030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of noise on the vestibular system - Vestibular evoked potential studies in rats.
    Sohmer H; Elidan J; Plotnik M; Freeman S; Sockalingam R; Berkowitz Z; Mager M
    Noise Health; 1999; 2(5):41-52. PubMed ID: 12689484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats.
    Stewart CE; Kanicki AC; Altschuler RA; King WM
    J Neurophysiol; 2018 Feb; 119(2):662-667. PubMed ID: 29118200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to Intense Noise Causes Vestibular Loss.
    Stewart CE; Kanicki AC; Bauer DS; Altschuler RA; King WM
    Mil Med; 2020 Jan; 185(Suppl 1):454-461. PubMed ID: 32074366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of white noise "masking" on vestibular evoked potentials recorded using different stimulus modalities.
    Freeman S; Plotnik M; Elidan J; Rosen LJ; Sohmer H
    Acta Otolaryngol; 1999; 119(3):311-5. PubMed ID: 10380734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recording of short-latency vestibular evoked potentials induced by acceleration impulses in experimental animals: current status of the method and its applications.
    Elidan J; Langhofer L; Honrubia V
    Electroencephalogr Clin Neurophysiol; 1987 Jan; 68(1):58-69. PubMed ID: 2431892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-retest reliability of the vestibular sensory-evoked potential (VsEP) in C57BL/6J mice.
    Honaker JA; Lee C; Criter RE; Jones TA
    J Am Acad Audiol; 2015 Jan; 26(1):59-67. PubMed ID: 25597461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balance beam crossing times are slower after noise exposure in rats.
    Bartikofsky D; Hertz MJ; Bauer DS; Altschuler R; King WM; Stewart CE
    Front Integr Neurosci; 2023; 17():1196477. PubMed ID: 37497526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the utricular origin of the vestibular short-latency-evoked potential (VsEP) to bone-conducted vibration in guinea pig.
    Chihara Y; Wang V; Brown DJ
    Exp Brain Res; 2013 Aug; 229(2):157-70. PubMed ID: 23780310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of the vestibular short-latency evoked potential by electrical stimulation of the central vestibular system.
    Pastras CJ; Curthoys IS; Sokolic L; Brown DJ
    Hear Res; 2018 Apr; 361():23-35. PubMed ID: 29433062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high intensity noise on the vestibular system in rats.
    Stewart C; Yu Y; Huang J; Maklad A; Tang X; Allison J; Mustain W; Zhou W; Zhu H
    Hear Res; 2016 May; 335():118-127. PubMed ID: 26970474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the auditory brain-stem response and its reconstructed waveforms following discrete wavelet transformation.
    Wilson WJ
    Clin Neurophysiol; 2004 May; 115(5):1129-39. PubMed ID: 15066538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effect of the loop diuretic furosemide on short latency auditory and vestibular-evoked potentials.
    Freeman S; Plotnik M; Elidan J; Sohmer H
    Am J Otol; 1999 Jan; 20(1):41-5. PubMed ID: 9918170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Vestibular evoked potentials in "Gallus Domesticus"].
    Weisleder P; Jones TA; Rubel EW
    Arch Neurobiol (Madr); 1989; 52(6):307-13. PubMed ID: 2635851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarities and Differences Between Vestibular and Cochlear Systems - A Review of Clinical and Physiological Evidence.
    Curthoys IS; Grant JW; Pastras CJ; Fröhlich L; Brown DJ
    Front Neurosci; 2021; 15():695179. PubMed ID: 34456671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed infrared stimulation evoked electrical potential in mouse vestibular system.
    Jiang W; Wang Z; Xiao S; Zeng D; Wu Z; Peng C; Chen F
    Neurosci Lett; 2022 Apr; 775():136510. PubMed ID: 35134492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of evoked potentials to objectively differentiate between selective vulnerability of cochlear and vestibular end organ function.
    Freeman S; Priner R; Mager M; Sichel JY; Perez R; Elidan J; Sohmer H
    J Basic Clin Physiol Pharmacol; 2000; 11(3):193-200. PubMed ID: 11041383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs).
    Jones TA; Jones SM; Vijayakumar S; Brugeaud A; Bothwell M; Chabbert C
    Hear Res; 2011 Oct; 280(1-2):133-40. PubMed ID: 21664446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.