These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 38915793)
1. Explainable machine learning for predicting neurological outcome in hemorrhagic and ischemic stroke patients in critical care. Wei H; Huang X; Zhang Y; Jiang G; Ding R; Deng M; Wei L; Yuan H Front Neurol; 2024; 15():1385013. PubMed ID: 38915793 [TBL] [Abstract][Full Text] [Related]
2. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation. Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S Front Neurol; 2023; 14():1185447. PubMed ID: 37614971 [TBL] [Abstract][Full Text] [Related]
3. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
4. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
5. Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning. Huang J; Liu X; Jin W Digit Health; 2024; 10():20552076241280126. PubMed ID: 39314817 [TBL] [Abstract][Full Text] [Related]
6. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study. Su PY; Wei YC; Luo H; Liu CH; Huang WY; Chen KF; Lin CP; Wei HY; Lee TH JMIR Med Inform; 2022 Mar; 10(3):e32508. PubMed ID: 35072631 [TBL] [Abstract][Full Text] [Related]
8. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
9. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. Huang T; Le D; Yuan L; Xu S; Peng X PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342 [TBL] [Abstract][Full Text] [Related]
10. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers. Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999 [TBL] [Abstract][Full Text] [Related]
11. Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study. Kim YK; Seo WD; Lee SJ; Koo JH; Kim GC; Song HS; Lee M J Med Internet Res; 2024 Sep; 26():e62890. PubMed ID: 39288404 [TBL] [Abstract][Full Text] [Related]
12. Machine learning models for mortality prediction in critically ill patients with acute pancreatitis-associated acute kidney injury. Liu Y; Zhu X; Xue J; Maimaitituerxun R; Chen W; Dai W Clin Kidney J; 2024 Oct; 17(10):sfae284. PubMed ID: 39385947 [TBL] [Abstract][Full Text] [Related]
13. Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases. Cai D; Xiao T; Zou A; Mao L; Chi B; Wang Y; Wang Q; Ji Y; Sun L Front Cardiovasc Med; 2022; 9():964894. PubMed ID: 36158815 [TBL] [Abstract][Full Text] [Related]
14. A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning. Yang B; Zhu Y; Lu X; Shen C Front Endocrinol (Lausanne); 2022; 13():917838. PubMed ID: 35846312 [TBL] [Abstract][Full Text] [Related]
15. A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis. Zhao QY; Liu LP; Luo JC; Luo YW; Wang H; Zhang YJ; Gui R; Tu GW; Luo Z Front Med (Lausanne); 2020; 7():637434. PubMed ID: 33553224 [No Abstract] [Full Text] [Related]
16. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
17. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study. Tang D; Ma C; Xu Y Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233 [TBL] [Abstract][Full Text] [Related]
18. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Chen X; Pan J; Li Y; Tang R Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228 [TBL] [Abstract][Full Text] [Related]
19. Machine learning-based prediction of early neurological deterioration after intravenous thrombolysis for stroke: insights from a large multicenter study. Wen R; Wang M; Bian W; Zhu H; Xiao Y; Zeng J; He Q; Wang Y; Liu X; Shi Y; Zhang L; Hong Z; Xu B Front Neurol; 2024; 15():1408457. PubMed ID: 39314867 [TBL] [Abstract][Full Text] [Related]
20. Development and validation of an interpretable machine learning for mortality prediction in patients with sepsis. He B; Qiu Z Front Artif Intell; 2024; 7():1348907. PubMed ID: 39040922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]