BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38915909)

  • 1. Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth.
    Yau A; Jogdand A; Chen Y
    Front Space Technol; 2023; 4():. PubMed ID: 38915909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensor integrated tissue chips and their applications on Earth and in space.
    Yau A; Wang Z; Ponthempilly N; Zhang Y; Wang X; Chen Y
    Biosens Bioelectron; 2023 Feb; 222():114820. PubMed ID: 36527831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic organ-on-chip technology for blood-brain barrier research.
    van der Helm MW; van der Meer AD; Eijkel JC; van den Berg A; Segerink LI
    Tissue Barriers; 2016; 4(1):e1142493. PubMed ID: 27141422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of a Human iPSC-Based Blood-Brain Barrier Chip.
    Jagadeesan S; Workman MJ; Herland A; Svendsen CN; Vatine GD
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32176199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current overview of induced pluripotent stem cell-based blood-brain barrier-on-a-chip.
    Alves ADH; Nucci MP; Ennes do Valle NM; Missina JM; Mamani JB; Rego GNA; Dias OFM; Garrigós MM; de Oliveira FA; Gamarra LF
    World J Stem Cells; 2023 Jun; 15(6):632-653. PubMed ID: 37424947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development.
    Mulay AR; Hwang J; Kim DH
    Adv Healthc Mater; 2024 Mar; ():e2303180. PubMed ID: 38430211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential applications of microfluidics based blood brain barrier (BBB)-on-chips for in vitro drug development.
    Wang X; Hou Y; Ai X; Sun J; Xu B; Meng X; Zhang Y; Zhang S
    Biomed Pharmacother; 2020 Dec; 132():110822. PubMed ID: 33059264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human iPSC-Derived Blood-Brain Barrier Chips Enable Disease Modeling and Personalized Medicine Applications.
    Vatine GD; Barrile R; Workman MJ; Sances S; Barriga BK; Rahnama M; Barthakur S; Kasendra M; Lucchesi C; Kerns J; Wen N; Spivia WR; Chen Z; Van Eyk J; Svendsen CN
    Cell Stem Cell; 2019 Jun; 24(6):995-1005.e6. PubMed ID: 31173718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Brain In Vitro Model for Pathogen Infection-Related Neurodegeneration Study.
    Yan Y; Cho AN
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organ-On-A-Chip Models of the Blood-Brain Barrier: Recent Advances and Future Prospects.
    Kawakita S; Mandal K; Mou L; Mecwan MM; Zhu Y; Li S; Sharma S; Hernandez AL; Nguyen HT; Maity S; de Barros NR; Nakayama A; Bandaru P; Ahadian S; Kim HJ; Herculano RD; Holler E; Jucaud V; Dokmeci MR; Khademhosseini A
    Small; 2022 Sep; 18(39):e2201401. PubMed ID: 35978444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organs-on-chips technologies - A guide from disease models to opportunities for drug development.
    Monteduro AG; Rizzato S; Caragnano G; Trapani A; Giannelli G; Maruccio G
    Biosens Bioelectron; 2023 Jul; 231():115271. PubMed ID: 37060819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue Chips in Space: Modeling Human Diseases in Microgravity.
    Low LA; Giulianotti MA
    Pharm Res; 2019 Dec; 37(1):8. PubMed ID: 31848830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface.
    Phan DT; Bender RHF; Andrejecsk JW; Sobrino A; Hachey SJ; George SC; Hughes CC
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1669-1678. PubMed ID: 28195514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organs in orbit: how tissue chip technology benefits from microgravity, a perspective.
    Jogdand A; Landolina M; Chen Y
    Front Lab Chip Technol; 2024; 3():. PubMed ID: 38915901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufactured tissue-to-tissue barrier chip for modeling the human blood-brain barrier and regulation of cellular trafficking.
    Kim J; Yoon T; Kim P; Bekhbat M; Kang SM; Rho HS; Ahn SI; Kim Y
    Lab Chip; 2023 Jun; 23(13):2990-3001. PubMed ID: 37159235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions.
    Holloway PM
    Methods Mol Biol; 2022; 2492():193-224. PubMed ID: 35733046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organoid and Organ-On-A-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease.
    Akhtar AA; Sances S; Barrett R; Breunig JJ
    Curr Stem Cell Rep; 2017 Jun; 3(2):98-111. PubMed ID: 28983454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.