BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3891606)

  • 21. Identification and characterization of a human T cell line-derived lymphokine with MAF-like activity distinct from interferon-gamma.
    Lee JC; Rebar L; Young P; Ruscetti FW; Hanna N; Poste G
    J Immunol; 1986 Feb; 136(4):1322-8. PubMed ID: 3003193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenotypic characterization of human T lymphocyte populations producing macrophage-activating factor (MAF) lymphokines.
    Biondi A; Roach JA; Schlossman SF; Todd RF
    J Immunol; 1984 Jul; 133(1):281-5. PubMed ID: 6373929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A rapid increase in acetylcholinesterase mRNA during ascidian embryogenesis as demonstrated by microinjection into Xenopus laevis oocytes.
    Perry HE; Melton DA
    Cell Differ; 1983 Nov; 13(3):233-8. PubMed ID: 6141851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of biologically active fibroblast-activating factor (FAF) by xenopus oocytes injected with T lymphocyte mRNA.
    Agelli M; Wahl SM
    Cell Immunol; 1987 Nov; 110(1):183-90. PubMed ID: 2890439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane-bound mRNAs are recruited from preinitiated ribonucleoprotein particles in injected Xenopus oocytes.
    Richter JD; Lorenz LJ; Audet RG
    J Biol Chem; 1985 Apr; 260(7):4448-54. PubMed ID: 3884610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of biologically active interleukin 2 by Xenopus oocytes in response to poly(A)-RNA from a gibbon T-cell line.
    Lin Y; Stadler BM; Rabin H
    J Biol Chem; 1982 Feb; 257(4):1587-90. PubMed ID: 6173379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. mRNA translation in Xenopus oocytes.
    Ceriotti A; Colman A
    Methods Mol Biol; 1995; 37():151-78. PubMed ID: 7780503
    [No Abstract]   [Full Text] [Related]  

  • 28. Expression of the functional D-glucose transport system in Xenopus oocytes injected with mRNA of rat small intestine.
    Aoshima H; Ishii H; Anan M
    Brain Res; 1987 Sep; 388(3):263-7. PubMed ID: 2823960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adrenocorticotropin receptors: functional expression from rat adrenal mRNA in Xenopus laevis oocytes.
    Mertz LM; Catt KJ
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8525-9. PubMed ID: 1656448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative changes in protein synthesis during oogenesis in Xenopus laevis.
    Taylor MA; Smith LD
    Dev Biol; 1985 Jul; 110(1):230-7. PubMed ID: 4007263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constitutive production of a non-interferon macrophage activating factor by HTLV-transformed T cells.
    Lee JC
    Lymphokine Res; 1986; 5 Suppl 1():S127-32. PubMed ID: 3023762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lymphokines inhibit macrophage RNA synthesis.
    Varesio L; Issaq HJ; Kowal R; Bonvini E; Taramelli D
    Cell Immunol; 1984 Mar; 84(1):51-64. PubMed ID: 6199124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon.
    Schreiber RD; Pace JL; Russell SW; Altman A; Katz DH
    J Immunol; 1983 Aug; 131(2):826-32. PubMed ID: 6408190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of mRNA responsible for induction of functional sodium channels in Xenopus oocytes.
    Hirono C; Yamagishi S; Ohara R; Hisanaga Y; Nakayama T; Sugiyama H
    Brain Res; 1985 Dec; 359(1-2):57-64. PubMed ID: 2416399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interferon activity produced by interferon messenger RNA in Tilapiamosaiabica peters oocytes.
    Yang CT; Yang R; Hou YD
    Microbiologica; 1983 Oct; 6(4):261-75. PubMed ID: 6198582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macrophage-activating factors from different T cell clones induce distinct macrophage functions.
    Gemsa D; Debatin KM; Kramer W; Kubelka C; Deimann W; Kees U; Krammer PH
    J Immunol; 1983 Aug; 131(2):833-44. PubMed ID: 6190940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of catalytically active rat testosterone 5 alpha-reductase in microinjected Xenopus oocytes: evidence for tissue-specific differences in translatable mRNA.
    Farkash Y; Soreq H; Orly J
    Proc Natl Acad Sci U S A; 1988 Aug; 85(16):5824-8. PubMed ID: 2457902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The production of a macrophage-activating factor from rainbow trout Salmo gairdneri leucocytes.
    Graham S; Secombes CJ
    Immunology; 1988 Oct; 65(2):293-7. PubMed ID: 3056854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Xenopus egg extract translation system.
    Matthews GM; Colman A
    Methods Mol Biol; 1995; 37():199-213. PubMed ID: 7780505
    [No Abstract]   [Full Text] [Related]  

  • 40. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA.
    Bertran J; Werner A; Stange G; Markovich D; Biber J; Testar X; Zorzano A; Palacin M; Murer H
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):717-23. PubMed ID: 1536650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.