BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38916293)

  • 21. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis.
    Goodrich-Blair H
    Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria.
    Martens EC; Heungens K; Goodrich-Blair H
    J Bacteriol; 2003 May; 185(10):3147-54. PubMed ID: 12730175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the pleiotropic phenotype of an ompR strain of Xenorhabdus nematophila.
    Forst S; Boylan B
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):43-9. PubMed ID: 12448704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes.
    Heungens K; Cowles CE; Goodrich-Blair H
    Mol Microbiol; 2002 Sep; 45(5):1337-53. PubMed ID: 12207701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations.
    Mucci NC; Jones KA; Cao M; Wyatt MR; Foye S; Kauffman SJ; Richards GR; Taufer M; Chikaraishi Y; Steffan SA; Campagna SR; Goodrich-Blair H
    mSystems; 2022 Jun; 7(3):e0031222. PubMed ID: 35543104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a lipoprotein, NilC, required by Xenorhabdus nematophila for mutualism with its nematode host.
    Cowles CE; Goodrich-Blair H
    Mol Microbiol; 2004 Oct; 54(2):464-77. PubMed ID: 15469517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variation in pathogenicity of different strains of Xenorhabdus nematophila; Differential immunosuppressive activities and secondary metabolite production.
    Hasan MA; Ahmed S; Mollah MMI; Lee D; Kim Y
    J Invertebr Pathol; 2019 Sep; 166():107221. PubMed ID: 31356819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation.
    Martens EC; Goodrich-Blair H
    Cell Microbiol; 2005 Dec; 7(12):1723-35. PubMed ID: 16309459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).
    Hirao A; Ehlers RU
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immune Response of
    Garriga A; Mastore M; Morton A; Pino FGD; Brivio MF
    Insects; 2020 Mar; 11(4):. PubMed ID: 32231138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila.
    Cowles KN; Cowles CE; Richards GR; Martens EC; Goodrich-Blair H
    Cell Microbiol; 2007 May; 9(5):1311-23. PubMed ID: 17223926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manifold aspects of specificity in a nematode-bacterium mutualism.
    Chapuis E; Emelianoff V; Paulmier V; Le Brun N; Pagès S; Sicard M; Ferdy JB
    J Evol Biol; 2009 Oct; 22(10):2104-17. PubMed ID: 19732258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The prophenoloxidase system in Drosophila participates in the anti-nematode immune response.
    Cooper D; Wuebbolt C; Heryanto C; Eleftherianos I
    Mol Immunol; 2019 May; 109():88-98. PubMed ID: 30909122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria).
    Sicard M; Ferdy JB; Pagès S; Le Brun N; Godelle B; Boemare N; Moulia C
    J Evol Biol; 2004 Sep; 17(5):985-93. PubMed ID: 15312071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition.
    Richards GR; Goodrich-Blair H
    Cell Microbiol; 2009 Jul; 11(7):1025-33. PubMed ID: 19374654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response.
    Binda-Rossetti S; Mastore M; Protasoni M; Brivio MF
    J Invertebr Pathol; 2016 Jan; 133():110-9. PubMed ID: 26549224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and functional characterization of a Xenorhabdus nematophila oligopeptide permease.
    Orchard SS; Goodrich-Blair H
    Appl Environ Microbiol; 2004 Sep; 70(9):5621-7. PubMed ID: 15345451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont.
    Sicard M; Ramone H; Le Brun N; Pagès S; Moulia C
    Naturwissenschaften; 2005 Oct; 92(10):472-6. PubMed ID: 16163505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin.
    Kim IH; Aryal SK; Aghai DT; Casanova-Torres ÁM; Hillman K; Kozuch MP; Mans EJ; Mauer TJ; Ogier JC; Ensign JC; Gaudriault S; Goodman WG; Goodrich-Blair H; Dillman AR
    BMC Genomics; 2017 Dec; 18(1):927. PubMed ID: 29191166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential Regulation of Immune Signaling and Survival Response in Drosophila melanogaster Larvae upon Steinernema carpocapsae Nematode Infection.
    Yadav S; Gupta S; Eleftherianos I
    Insects; 2018 Feb; 9(1):. PubMed ID: 29419764
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.