These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38916450)

  • 1. Nuclear Quantum Effects on the Electronic Structure of Water and Ice.
    Berrens ML; Kundu A; Calegari Andrade MF; Pham TA; Galli G; Donadio D
    J Phys Chem Lett; 2024 Jul; 15(26):6818-6825. PubMed ID: 38916450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of nuclear quantum effects in the relative stability of hexagonal and cubic ice.
    Buxton SJ; Quigley D; Habershon S
    J Chem Phys; 2019 Oct; 151(14):144503. PubMed ID: 31615225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing the nuclear quantum effects in molecular dynamics for lattice thermal conductivity calculations: Using ice as example.
    Luo R; Yu K
    J Chem Phys; 2020 Nov; 153(19):194105. PubMed ID: 33218245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature.
    Litman Y; Donadio D; Ceriotti M; Rossi M
    J Chem Phys; 2018 Mar; 148(10):102320. PubMed ID: 29544260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear quantum dynamics in dense hydrogen.
    Kang D; Sun H; Dai J; Chen W; Zhao Z; Hou Y; Zeng J; Yuan J
    Sci Rep; 2014 Jun; 4():5484. PubMed ID: 24968754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice.
    Meier T; Petitgirard S; Khandarkhaeva S; Dubrovinsky L
    Nat Commun; 2018 Jul; 9(1):2766. PubMed ID: 30018359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs.
    Fang W; Chen J; Rossi M; Feng Y; Li XZ; Michaelides A
    J Phys Chem Lett; 2016 Jun; 7(11):2125-31. PubMed ID: 27195654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Importance of Nuclear Quantum Effects on the Thermodynamic and Structural Properties of Low-Density Amorphous Ice: A Comparison with Hexagonal Ice.
    Eltareb A; Lopez GE; Giovambattista N
    J Phys Chem B; 2023 May; 127(20):4633-4645. PubMed ID: 37178124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field.
    Cassone G
    J Phys Chem Lett; 2020 Nov; 11(21):8983-8988. PubMed ID: 33035059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear quantum fluctuations in ice I(h).
    Moreira PA; de Koning M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24716-21. PubMed ID: 26225913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Routine Molecular Dynamics Simulations Including Nuclear Quantum Effects: From Force Fields to Machine Learning Potentials.
    Plé T; Mauger N; Adjoua O; Inizan TJ; Lagardère L; Huppert S; Piquemal JP
    J Chem Theory Comput; 2023 Mar; 19(5):1432-1445. PubMed ID: 36856658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotope effects in ice Ih: a path-integral simulation.
    Herrero CP; Ramírez R
    J Chem Phys; 2011 Mar; 134(9):094510. PubMed ID: 21384988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio study of nuclear quantum effects on sub- and supercritical water.
    Thomsen B; Shiga M
    J Chem Phys; 2021 Nov; 155(19):194107. PubMed ID: 34800944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Free Energy Profiles for Molecular Proton Transfers.
    Lamaire A; Cools-Ceuppens M; Bocus M; Verstraelen T; Van Speybroeck V
    J Chem Theory Comput; 2023 Jan; 19(1):18-24. PubMed ID: 36563337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static and Dynamic Correlations in Water: Comparison of Classical Ab Initio Molecular Dynamics at Elevated Temperature with Path Integral Simulations at Ambient Temperature.
    Li C; Paesani F; Voth GA
    J Chem Theory Comput; 2022 Apr; 18(4):2124-2131. PubMed ID: 35263110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Independent Nuclear Quantum Effects on the Structure of Water.
    Kim KH; Pathak H; Späh A; Perakis F; Mariedahl D; Sellberg JA; Katayama T; Harada Y; Ogasawara H; Pettersson LGM; Nilsson A
    Phys Rev Lett; 2017 Aug; 119(7):075502. PubMed ID: 28949651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-in-1 Phase Space Sampling for Calculating the Absorption Spectrum of the Hydrated Electron.
    Turi L; Baranyi B; Madarász Á
    J Chem Theory Comput; 2024 May; 20(10):4265-4277. PubMed ID: 38727675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice and water droplets on graphite: a comparison of quantum and classical simulations.
    Ramírez R; Singh JK; Müller-Plathe F; Böhm MC
    J Chem Phys; 2014 Nov; 141(20):204701. PubMed ID: 25429951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum nature of the hydrogen bond from ambient conditions down to ultra-low temperatures.
    Schran C; Marx D
    Phys Chem Chem Phys; 2019 Dec; 21(45):24967-24975. PubMed ID: 31702755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear Quantum Effects in Hydrophobic Nanoconfinement.
    Shrestha BR; Pillai S; Santana A; Donaldson SH; Pascal TA; Mishra H
    J Phys Chem Lett; 2019 Sep; 10(18):5530-5535. PubMed ID: 31365261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.