These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38916528)

  • 21. Lightweight bricks manufactured from water treatment sludge and rice husks.
    Chiang KY; Chou PH; Hua CR; Chien KL; Cheeseman C
    J Hazard Mater; 2009 Nov; 171(1-3):76-82. PubMed ID: 19596512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical and toxicological characterization of the bricks produced from clay/sewage sludge mixture.
    Gerić M; Gajski G; Oreščanin V; Kollar R; Garaj-Vrhovac V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1521-7. PubMed ID: 22702811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporation of sewage sludge in clay brick and its characterization.
    Liew AG; Idris A; Wong CH; Samad AA; Noor MJ; Baki AM
    Waste Manag Res; 2004 Aug; 22(4):226-33. PubMed ID: 15462329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge.
    Xiong Q; Wu X; Lv H; Liu S; Hou H; Wu X
    Chemosphere; 2021 Oct; 280():130566. PubMed ID: 33932904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leachate analysis of green and fired-clay bricks incorporated with biosolids.
    Ukwatta A; Mohajerani A
    Waste Manag; 2017 Aug; 66():134-144. PubMed ID: 28461141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics.
    Lynn CJ; Dhir RK; Ghataora GS
    Water Sci Technol; 2016; 74(1):17-29. PubMed ID: 27386979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker.
    Liu DG; Min XB; Ke Y; Chai LY; Liang YJ; Li YC; Yao LW; Wang ZB
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7600-7607. PubMed ID: 29282669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reuse of waste sludge from water treatment plants and fly ash for manufacturing of adobe bricks.
    Minh Trang NT; Dao Ho NA; Babel S
    Chemosphere; 2021 Dec; 284():131367. PubMed ID: 34323781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Risk assessment and technical feasibility of usage of paper mill sludge biochar-based exhausted adsorbent for geopolymeric brick formation.
    Devi P; Saroha AK
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21641-21651. PubMed ID: 27522200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and characterization of green bricks using pharmaceutical industrial wastes.
    Yamuna Rani M; Bhagawan D; Himabindu V; Venkateswara Reddy V; Saritha P
    Environ Sci Pollut Res Int; 2016 May; 23(10):9323-33. PubMed ID: 26286801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.
    Adazabra AN; Viruthagiri G; Shanmugam N
    Waste Manag; 2017 Jun; 64():286-304. PubMed ID: 28336335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.
    Martínez-García C; Eliche-Quesada D; Pérez-Villarejo L; Iglesias-Godino FJ; Corpas-Iglesias FA
    J Environ Manage; 2012 Mar; 95 Suppl():S343-8. PubMed ID: 21723033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reuse of walnut shell waste in the development of fired ceramic bricks.
    Barnabas AA; Balogun OA; Akinwande AA; Ogbodo JF; Ademati AO; Dongo EI; Romanovski V
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11823-11837. PubMed ID: 36098915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks.
    Belmonte LJ; Ottosen LM; Kirkelund GM; Jensen PE; Vestbø AP
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32831-32843. PubMed ID: 27832436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transformation behaviors of heavy metals and dewaterability of sewage sludge during the dual conditioning with Fe
    Xiong Q; Zhou M; Liu M; Jiang S; Hou H
    Chemosphere; 2018 Oct; 208():93-100. PubMed ID: 29860149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Construction Material Using Wastewater: An Application of Circular Economy for Mass Production of Bricks.
    Ghafoor S; Hameed A; Shah SAR; Azab M; Faheem H; Nawaz MF; Iqbal F
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.