BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38916583)

  • 1. Water-Based Continuous Fabrication of Highly Elastic Electromagnetic Fibers.
    Gao X; Su J; Xu C; Cao S; Gu S; Sun W; You Z
    ACS Nano; 2024 Jun; ():. PubMed ID: 38916583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-Tough and Environmentally Stable Aramid. Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency.
    Liu LX; Chen W; Zhang HB; Ye L; Wang Z; Zhang Y; Min P; Yu ZZ
    Nanomicro Lett; 2022 Apr; 14(1):111. PubMed ID: 35461406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ultrastretchable Electrical Switch Fiber with a Magnetic Liquid Metal Core for Remote Magnetic Actuation.
    Hong K; Choe M; Kim S; Lee HM; Kim BJ; Park S
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultratough Bioinspired Graphene Fiber via Sequential Toughening of Hydrogen and Ionic Bonding.
    Wang X; Peng J; Zhang Y; Li M; Saiz E; Tomsia AP; Cheng Q
    ACS Nano; 2018 Dec; 12(12):12638-12645. PubMed ID: 30462484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors.
    Tong R; Ma Z; Gu P; Yao R; Li T; Zeng M; Guo F; Liu L; Xu J
    Int J Biol Macromol; 2023 Aug; 246():125683. PubMed ID: 37419262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance.
    Hsiao ST; Ma CC; Liao WH; Wang YS; Li SM; Huang YC; Yang RB; Liang WF
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10667-78. PubMed ID: 24921939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous Waterborne Polyurethane Composite with Alternating Electromagnetic Layers for Absorption-Dominated Electromagnetic Interference Shielding.
    Feng Y; Li M; Yang S; Wang J
    Langmuir; 2023 Jul; 39(26):9219-9229. PubMed ID: 37352406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-Coordinated Cellulose Fibers for Electric Devices with Motion Sensitivity and Flame Retardance.
    Liu Y; Li K; Yao J; Li X; Xia Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18272-18280. PubMed ID: 36999640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Preparation of Continuous and Porous Polyimide Aerogel Fibers for Multifunctional Applications.
    Li M; Gan F; Dong J; Fang Y; Zhao X; Zhang Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10416-10427. PubMed ID: 33595283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Spinning of High-Tough Hydrogel Fibers for Flexible Electronics by Using Regional Heterogeneous Polymerization.
    Wu S; Gong C; Wang Z; Xu S; Feng W; Qiu Z; Yan Y
    Adv Sci (Weinh); 2023 Dec; 10(36):e2305226. PubMed ID: 37888848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile Liquid Metal/Alginate Composite Fibers with Enhanced Flame Retardancy and Triboelectric Performance for Smart Wearable Textiles.
    Qi X; Liu Y; Yu L; Yu Z; Chen L; Li X; Xia Y
    Adv Sci (Weinh); 2023 Oct; 10(29):e2303406. PubMed ID: 37551040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for Wearable Multifunctional Textiles.
    Yi P; Zou H; Yu Y; Li X; Li Z; Deng G; Chen C; Fang M; He J; Sun X; Liu X; Shui J; Yu R
    ACS Nano; 2022 Sep; 16(9):14490-14502. PubMed ID: 36094895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Flexible and Stretchable MXene/Waterborne Polyurethane Composite-Coated Fiber Strain Sensor for Wearable Motion and Healthcare Monitoring.
    Cao J; Jiang Y; Li X; Yuan X; Zhang J; He Q; Ye F; Luo G; Guo S; Zhang Y; Wang Q
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable and Weldable Superelastic EGaIn/TPU Composite Fiber by Wet Spinning for Flexible Electronics.
    Zhou J; Zhao S; Tang L; Zhang D; Sheng B
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38031357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible, Ultralight, and Mechanically Robust Waterborne Polyurethane/Ti
    Wang Y; Qi Q; Yin G; Wang W; Yu D
    ACS Appl Mater Interfaces; 2021 May; 13(18):21831-21843. PubMed ID: 33909972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core-Shell Segmental Configuration for Wearable Strain and Temperature Sensors.
    Chen J; Wen H; Zhang G; Lei F; Feng Q; Liu Y; Cao X; Dong H
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7565-7574. PubMed ID: 31971764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-Programmable Liquid Metal Fibers.
    Ma B; Zhang J; Chen G; Chen Y; Xu C; Lei L; Liu H
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable and transparent alginate ionic gel film for multifunctional sensors and devices.
    Tong R; Ma Z; Yao R; Gu P; Li T; Liu L; Guo F; Zeng M; Xu J
    Int J Biol Macromol; 2023 Aug; 246():125667. PubMed ID: 37406908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite.
    Hsiao ST; Ma CC; Tien HW; Liao WH; Wang YS; Li SM; Yang CY; Lin SC; Yang RB
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2817-26. PubMed ID: 25569714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Millefeuille-inspired highly conducting polymer nanocomposites based on controllable layer-by-layer assembly strategy for durable and stable electromagnetic interference shielding.
    Yang S; Yang P; Ren C; Zhao X; Zhang J
    J Colloid Interface Sci; 2022 Sep; 622():97-108. PubMed ID: 35489105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.